AIMC Topic: Liver Neoplasms

Clear Filters Showing 21 to 30 of 757 articles

Integrating Machine Learning and Follow-Up Variables to Improve Early Detection of Hepatocellular Carcinoma in Tyrosinemia Type 1: A Multicenter Study.

International journal of molecular sciences
Hepatocellular carcinoma (HCC) is a major complication of tyrosinemia type 1 (HT-1), an inborn error of metabolism affecting tyrosine catabolism. The risk of HCC is higher in late diagnoses despite treatment. Alpha-fetoprotein (AFP) is widely used to...

Transformer-based deep learning for accurate detection of multiple base modifications using single molecule real-time sequencing.

Communications biology
We had previously reported a convolutional neural network (CNN) based approach, called the holistic kinetic model (HK model 1), for detecting 5-methylcytosine (5mC) by single molecule real-time sequencing (Pacific Biosciences). In this study, we cons...

Uncertainty-aware segmentation quality prediction via deep learning Bayesian Modeling: Comprehensive evaluation and interpretation on skin cancer and liver segmentation.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Image segmentation is a critical step in computational biomedical image analysis, typically evaluated using metrics like the Dice coefficient during training and validation. However, in clinical settings without manual annotations, assessing segmenta...

Integrated multi-omics analysis and machine learning refine molecular subtypes and clinical outcome for hepatocellular carcinoma.

Hereditas
The high morbidity and mortality of hepatocellular carcinoma (HCC) impose a substantial economic burden on patients' families and society, and the majority of HCC patients are detected at advanced stages and experience poor therapeutic outcomes, wher...

Evaluating the dosimetric and positioning accuracy of a deep learning based synthetic-CT model for liver radiotherapy treatment planning.

Biomedical physics & engineering express
An MRI-only workflow requires synthetic computed tomography (sCT) images to enable dose calculation. This study evaluated the dosimetric and patient positioning accuracy of deep learning-generated sCT for liver radiotherapy.sCT images were generated ...

Habitat Radiomics Based on MRI for Predicting Metachronous Liver Metastasis in Locally Advanced Rectal Cancer: a Two‑center Study.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to explore the feasibility of using habitat radiomics based on magnetic resonance imaging (MRI) to predict metachronous liver metastasis (MLM) in locally advanced rectal cancer (LARC) patients. A nomogram wa...

Deep learning-based uncertainty quantification for quality assurance in hepatobiliary imaging-based techniques.

Oncotarget
Recent advances in deep learning models have transformed medical imaging analysis, particularly in radiology. This editorial outlines how uncertainty quantification through embedding-based approaches enhances diagnostic accuracy and reliability in he...

LKAN: LLM-Based Knowledge-Aware Attention Network for Clinical Staging of Liver Cancer.

IEEE journal of biomedical and health informatics
Clinical staging of liver cancer (CSoLC), an important indicator for evaluating primary liver cancer (PLC), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) stagi...

Deep learning-based reconstruction and superresolution for MR-guided thermal ablation of malignant liver lesions.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: This study evaluates the impact of deep learning-enhanced T1-weighted VIBE sequences (DL-VIBE) on image quality and procedural parameters during MR-guided thermoablation of liver malignancies, compared to standard VIBE (SD-VIBE).

Integrating single-cell RNA sequencing, WGCNA, and machine learning to identify key biomarkers in hepatocellular carcinoma.

Scientific reports
The microarray and single-cell RNA-sequencing (scRNA-seq) datasets of hepatocellular carcinoma (HCC) were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (W...