Technology in cancer research & treatment
40152005
The aim was to evaluate a deep learning-based auto-segmentation method for liver delineation in Y-90 selective internal radiation therapy (SIRT). A deep learning (DL)-based liver segmentation model using the U-Net3D architecture was built. Auto-segme...
: Liver cancer ranks among the leading causes of cancer-related mortality, necessitating the development of novel diagnostic methods. Deregulated lipid metabolism, a hallmark of hepatocarcinogenesis, offers compelling prospects for biomarker identifi...
BACKGROUND: Microvascular invasion (MVI) is an important risk factor for early postoperative recurrence of hepatocellular carcinoma (HCC). Based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance ...
OBJECTIVES: Prior to the commencement of treatment, it is essential to establish an objective method for accurately predicting the prognosis of patients with hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE). In this st...
BACKGROUND AND OBJECTIVE: Accurate medical tumor segmentation is critical for early diagnosis and treatment planning, significantly improving patient outcomes. This study aims to enhance liver and tumor segmentation from CT and liver images by develo...
International journal of biological macromolecules
40139615
In addition to histological evaluation for nonalcoholic fatty liver disease (NAFLD), a comprehensive analysis of the metabolic landscape is urgently needed to categorize patients into distinct subgroups for precise treatment. In this study, a total o...
Cancer imaging : the official publication of the International Cancer Imaging Society
40176185
OBJECTIVE: This study evaluates the impact of deep learning-enhanced T1-weighted VIBE sequences (DL-VIBE) on image quality and procedural parameters during MR-guided thermoablation of liver malignancies, compared to standard VIBE (SD-VIBE).
An MRI-only workflow requires synthetic computed tomography (sCT) images to enable dose calculation. This study evaluated the dosimetric and patient positioning accuracy of deep learning-generated sCT for liver radiotherapy.sCT images were generated ...
The microarray and single-cell RNA-sequencing (scRNA-seq) datasets of hepatocellular carcinoma (HCC) were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (W...
OBJECTIVE: To compare a deep learning (DL)-accelerated non-enhanced abbreviated MRI (AMRI) protocol with standard AMRI (AMRI) of the liver in terms of image quality and malignant focal lesion detection.