AIMC Topic: Metabolomics

Clear Filters Showing 21 to 30 of 334 articles

Identification of pivotal genes and regulatory networks associated with SAH based on multi-omics analysis and machine learning.

Scientific reports
Subarachnoid hemorrhage (SAH) is a disease with high mortality and morbidity, and its pathophysiology is complex but poorly understood. To investigate the potential therapeutic targets post-SAH, the SAH-related feature genes were screened by the comb...

The inconsistent pathogenesis of endometriosis and adenomyosis: insights from endometrial metabolome and microbiome.

mSystems
UNLABELLED: Endometriosis (EM) and adenomyosis (AM) are interrelated gynecological disorders characterized by the aberrant presence of endometrial tissue and are frequently linked with chronic pelvic pain and infertility, yet their pathogenetic mecha...

Biofabrication of HepG2 Cells-Laden 3D Structures Using Nanocellulose-Reinforced Gelatin-Based Hydrogel Bioinks: Materials Characterization, Cell Viability Assessment, and Metabolomic Analysis.

ACS biomaterials science & engineering
The successful replication of the intricate architecture of human tissues remains a major challenge in the biomedical area. Three-dimensional (3D) bioprinting has emerged as a promising approach for the biofabrication of living tissue analogues, taki...

Pseudotargeted metabolomics profiles potential damage-associated molecular patterns as machine learning predictors for acute pancreatitis.

Journal of pharmaceutical and biomedical analysis
Acute pancreatitis (AP) is a common gastrointestinal disease characterized by pancreatic cell damage and inflammation. Given the early clinical diagnosis and management challenges, exploring novel analytical frameworks from new orientations for inter...

Improved prediction and risk stratification of major adverse cardiovascular events using an explainable machine learning approach combining plasma biomarkers and traditional risk factors.

Cardiovascular diabetology
BACKGROUND: Cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality globally. Traditional risk models, primarily based on established risk factors, often lack the precision needed to accurately predict new-onset major advers...

Metabolomic machine learning-based model predicts efficacy of chemoimmunotherapy for advanced lung squamous cell carcinoma.

Frontiers in immunology
BACKGROUND: Unlike lung adenocarcinoma, patients with advanced squamous carcinoma exhibit a low proportion of driver gene positivity, with fewer effective treatment strategies available. Chemoimmunotherapy has now become the standard first-line treat...

Amogel: a multi-omics classification framework using associative graph neural networks with prior knowledge for biomarker identification.

BMC bioinformatics
The advent of high-throughput sequencing technologies, such as DNA microarray and DNA sequencing, has enabled effective analysis of cancer subtypes and targeted treatment. Furthermore, numerous studies have highlighted the capability of graph neural ...

Proposed Comprehensive Methodology Integrated with Explainable Artificial Intelligence for Prediction of Possible Biomarkers in Metabolomics Panel of Plasma Samples for Breast Cancer Detection.

Medicina (Kaunas, Lithuania)
: Breast cancer (BC) is the most common type of cancer in women, accounting for more than 30% of new female cancers each year. Although various treatments are available for BC, most cancer-related deaths are due to incurable metastases. Therefore, th...

AI-driven framework to map the brain metabolome in three dimensions.

Nature metabolism
High-resolution spatial imaging is transforming our understanding of foundational biology. Spatial metabolomics is an emerging field that enables the dissection of the complex metabolic landscape and heterogeneity from a thin tissue section. Currentl...