AIMC Topic:
Middle Aged

Clear Filters Showing 1801 to 1810 of 14390 articles

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC health services research
BACKGROUND: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital...

A prediction study on the occurrence risk of heart disease in older hypertensive patients based on machine learning.

BMC geriatrics
OBJECTIVE: Constructing a predictive model for the occurrence of heart disease in elderly hypertensive individuals, aiming to provide early risk identification.

Integrated RNA sequencing analysis and machine learning identifies a metabolism-related prognostic signature in clear cell renal cell carcinoma.

Scientific reports
The connection between metabolic reprogramming and tumor progression has been demonstrated in an increasing number of researches. However, further research is required to identify how metabolic reprogramming affects interpatient heterogeneity and pro...

Identification of biomarkers for knee osteoarthritis through clinical data and machine learning models.

Scientific reports
Knee osteoarthritis (KOA) represents a progressive degenerative disorder characterized by the gradual erosion of articular cartilage. This study aimed to develop and validate biomarker-based predictive models for KOA diagnosis using machine learning ...

A benchmark of deep learning approaches to predict lung cancer risk using national lung screening trial cohort.

Scientific reports
Deep learning (DL) methods have demonstrated remarkable effectiveness in assisting with lung cancer risk prediction tasks using computed tomography (CT) scans. However, the lack of comprehensive comparison and validation of state-of-the-art (SOTA) mo...

Application of machine learning in depression risk prediction for connective tissue diseases.

Scientific reports
This study retrospectively collected clinical data from 480 patients with connective tissue diseases (CTDs) at Nanjing First Hospital between August 2019 and December 2023 to develop and validate a multi-classification machine learning (ML) model for...

Application of functional near-infrared spectroscopy and machine learning to predict treatment response after six months in major depressive disorder.

Translational psychiatry
Depression treatment responses vary widely among individuals. Identifying objective biomarkers with predictive accuracy for therapeutic outcomes can enhance treatment efficiency and avoid ineffective therapies. This study investigates whether functio...

Semi-Supervised Learning Allows for Improved Segmentation With Reduced Annotations of Brain Metastases Using Multicenter MRI Data.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Deep learning-based segmentation of brain metastases relies on large amounts of fully annotated data by domain experts. Semi-supervised learning offers potential efficient methods to improve model performance without excessive annotation ...

A Radiomic-Clinical Model of Contrast-Enhanced Mammography for Breast Cancer Biopsy Outcome Prediction.

Academic radiology
RATIONALE AND OBJECTIVES: In the USA over 1 million breast biopsies are performed annually. Approximately 9.6% diagnostic exams were given Breast Imaging Reporting and Data System (BI-RADS) ≥4A, most of which are 4A/4B. Contrast-enhanced mammography ...

Prediction of p-phenylenediamine antioxidant concentrations in human urine using machine learning models.

Journal of hazardous materials
p-phenylenediamine antioxidants (PPDs) are extensively used in rubber manufacturing for their potent antioxidative properties, but PPDs and 2-anilino-5-[(4-methylpentan-2yl)amino]cyclohexa-2,5-diene-1,4-dione (6PPDQ) pose potential environmental and ...