PURPOSE: In this study, we aimed to investigate the clinical feasibility of deep learning (DL)-based reconstruction applied to conventional diffusion-weighted imaging (cDWI) and synthetic diffusion-weighted imaging (sDWI) by comparing the DL reconstr...
Cardiovascular and interventional radiology
Nov 27, 2024
PURPOSE: To predict survival and tumor recurrence following image-guided thermal ablation (IGTA) of lung tumors segmented using a deep learning approach.
INTRODUCTION: Patient body composition (BC) has been shown to help predict clinical outcomes in rectal cancer patients. Artificial intelligence algorithms have allowed for easier acquisition of BC measurements, creating a comprehensive BC profile in ...
The prevalence of fatty liver disease is on the rise, posing a significant global health concern. If left untreated, it can progress into more serious liver diseases. Therefore, accurately diagnosing the condition at an early stage is essential for m...
OBJECTIVES: In axial spondyloarthritis (axSpA), early diagnosis is crucial, but diagnostic delay remains long and diagnostic criteria do not exist. We aimed to identify a diagnostic model that distinguishes patients with axSpA from patients without a...
BMC medical informatics and decision making
Nov 27, 2024
BACKGROUND: Rheumatoid Arthritis (RA) is a chronic inflammatory disease that is primarily diagnosed and managed by rheumatologists; however, it is often primary care providers who first encounter RA-related symptoms. This study developed and validate...
BMC medical informatics and decision making
Nov 27, 2024
Long COVID is a multi-systemic disease characterized by the persistence or occurrence of many symptoms that in many cases affect the pulmonary system. These, in turn, may deteriorate the patient's quality of life making it easier to develop severe co...
BACKGROUND: This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in F-FDG PET/CT images.
OBJECTIVE: Lymphovascular invasion (LVI) is critical for the effective treatment and prognosis of breast cancer (BC). This study aimed to investigate the value of eight machine learning models based on MRI radiomic features for the preoperative predi...
Major Depressive Disorder (MDD) is a common mental disorder characterized by cognitive impairment, and its pathophysiology remains to be explored. In this study, we aimed to explore the efficacy of brain network topological properties (TPs) in identi...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.