AIMC Topic: Middle Aged

Clear Filters Showing 2531 to 2540 of 14432 articles

Clinical feasibility of a deep learning approach for conventional and synthetic diffusion-weighted imaging in breast cancer: Qualitative and quantitative analyses.

European journal of radiology
PURPOSE: In this study, we aimed to investigate the clinical feasibility of deep learning (DL)-based reconstruction applied to conventional diffusion-weighted imaging (cDWI) and synthetic diffusion-weighted imaging (sDWI) by comparing the DL reconstr...

Artificial intelligence measured 3D lumbosacral body composition and clinical outcomes in rectal cancer patients.

ANZ journal of surgery
INTRODUCTION: Patient body composition (BC) has been shown to help predict clinical outcomes in rectal cancer patients. Artificial intelligence algorithms have allowed for easier acquisition of BC measurements, creating a comprehensive BC profile in ...

Ultrasound Versus Elastography in the Diagnosis of Hepatic Steatosis: Evaluation of Traditional Machine Learning Versus Deep Learning.

Sensors (Basel, Switzerland)
The prevalence of fatty liver disease is on the rise, posing a significant global health concern. If left untreated, it can progress into more serious liver diseases. Therefore, accurately diagnosing the condition at an early stage is essential for m...

Identification of a machine learning-based diagnostic model for axial spondyloarthritis in rheumatological routine care using a random forest approach.

RMD open
OBJECTIVES: In axial spondyloarthritis (axSpA), early diagnosis is crucial, but diagnostic delay remains long and diagnostic criteria do not exist. We aimed to identify a diagnostic model that distinguishes patients with axSpA from patients without a...

Development and validation of a rheumatoid arthritis case definition: a machine learning approach using data from primary care electronic medical records.

BMC medical informatics and decision making
BACKGROUND: Rheumatoid Arthritis (RA) is a chronic inflammatory disease that is primarily diagnosed and managed by rheumatologists; however, it is often primary care providers who first encounter RA-related symptoms. This study developed and validate...

Machine learning predicts pulmonary Long Covid sequelae using clinical data.

BMC medical informatics and decision making
Long COVID is a multi-systemic disease characterized by the persistence or occurrence of many symptoms that in many cases affect the pulmonary system. These, in turn, may deteriorate the patient's quality of life making it easier to develop severe co...

F-FDG PET/CT-based habitat radiomics combining stacking ensemble learning for predicting prognosis in hepatocellular carcinoma: a multi-center study.

BMC cancer
BACKGROUND: This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in F-FDG PET/CT images.

MRI-based radiomic and machine learning for prediction of lymphovascular invasion status in breast cancer.

BMC medical imaging
OBJECTIVE: Lymphovascular invasion (LVI) is critical for the effective treatment and prognosis of breast cancer (BC). This study aimed to investigate the value of eight machine learning models based on MRI radiomic features for the preoperative predi...

The efficacy of topological properties of functional brain networks in identifying major depressive disorder.

Scientific reports
Major Depressive Disorder (MDD) is a common mental disorder characterized by cognitive impairment, and its pathophysiology remains to be explored. In this study, we aimed to explore the efficacy of brain network topological properties (TPs) in identi...