BACKGROUND AND OBJECTIVE: Detecting patients at high risk of occurrence of an Invasive Disease Event after a first diagnosis of breast cancer, such as recurrence, distant metastasis, contralateral tumor and second tumor, could support clinical decisi...
OBJECTIVE: To develop and compare various preoperative cervical stromal invasion (CSI) prediction models, including radiomics, three-dimensional (3D) deep transfer learning (DTL), and integrated models, using single-sequence and multiparametric MRI.
BACKGROUND: To design a pulmonary ground-glass nodules (GGN) classification method based on computed tomography (CT) radiomics and machine learning for prediction of invasion in early-stage ground-glass opacity (GGO) pulmonary adenocarcinoma.
Physical and engineering sciences in medicine
39225775
The current study aimed to predict lymphovascular invasion (LVI) using multiple machine learning algorithms and multi-segmentation positron emission tomography (PET) radiomics in non-small cell lung cancer (NSCLC) patients, offering new avenues for p...
BACKGROUND: Lung cancer is the most prevalent and lethal cancer globally, necessitating accurate differentiation between benign and malignant pulmonary nodules to guide treatment decisions. This study aims to develop a predictive model that integrat...
Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract
39368645
BACKGROUND: Early recurrence is the leading cause of death for patients with perihilar cholangiocarcinoma (pCCA) after surgery. Identifying high-risk patients preoperatively is important. This study aimed to construct a preoperative prediction model ...
BACKGROUND: Lymphovascular invasion (LVI) is linked to poor prognosis in patients with muscle-invasive bladder cancer (MIBC). Accurately identifying the LVI status in MIBC patients is crucial for effective risk stratification and precision treatment....
PURPOSE: There are few markers to identify those likely to recur or progress after treatment with intravesical bacillus Calmette-Guérin (BCG). We developed and validated artificial intelligence (AI)-based histologic assays that extract interpretable ...
RATIONALE AND OBJECTIVES: Accurate prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is crucial for guiding treatment. This study evaluates and compares the performance of clinicoradiologic, traditional radiomics, deep-lear...