AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Organ Dysfunction Scores

Showing 11 to 20 of 26 articles

Clear Filters

Low vitamin D at ICU admission is associated with cancer, infections, acute respiratory insufficiency, and liver failure.

Nutrition (Burbank, Los Angeles County, Calif.)
OBJECTIVES: Vitamin D deficiency may be associated with comorbidities and poor prognosis. However, this association in patients in the intensive care unit (ICU) has not been fully elucidated. The aim of this study was to investigate whether the serum...

DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning.

Scientific reports
Traditional methods for assessing illness severity and predicting in-hospital mortality among critically ill patients require time-consuming, error-prone calculations using static variable thresholds. These methods do not capitalize on the emerging a...

On classifying sepsis heterogeneity in the ICU: insight using machine learning.

Journal of the American Medical Informatics Association : JAMIA
OBJECTIVES: Current machine learning models aiming to predict sepsis from electronic health records (EHR) do not account 20 for the heterogeneity of the condition despite its emerging importance in prognosis and treatment. This work demonstrates the ...

Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy.

Critical care (London, England)
BACKGROUND: Previous scoring models such as the Acute Physiologic Assessment and Chronic Health Evaluation II (APACHE II) and the Sequential Organ Failure Assessment (SOFA) scoring systems do not adequately predict mortality of patients undergoing co...

Automated quantification and architectural pattern detection of hepatic fibrosis in NAFLD.

Annals of diagnostic pathology
Accurate detection and quantification of hepatic fibrosis remain essential for assessing the severity of non-alcoholic fatty liver disease (NAFLD) and its response to therapy in clinical practice and research studies. Our aim was to develop an integr...

A deep learning approach for sepsis monitoring via severity score estimation.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Sepsis occurs in response to an infection in the body and can progress to a fatal stage. Detection and monitoring of sepsis require multi-step analysis, which is time-consuming, costly and requires medically trained personne...

A statistically rigorous deep neural network approach to predict mortality in trauma patients admitted to the intensive care unit.

The journal of trauma and acute care surgery
BACKGROUND: Trauma patients admitted to critical care are at high risk of mortality because of their injuries. Our aim was to develop a machine learning-based model to predict mortality using Fahad-Liaqat-Ahmad Intensive Machine (FLAIM) framework. We...