AIMC Topic: Predictive Value of Tests

Clear Filters Showing 1391 to 1400 of 2212 articles

Response to repeat echoendoscopic celiac plexus neurolysis in pancreatic cancer patients: A machine learning approach.

Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.]
BACKGROUND: /Objectives: Efficacy of repeat echoendoscopic celiac plexus neurolysis is still unclear. Aim of the study was to assess the efficacy of repeat celiac plexus neurolysis and to build an artificial neural network model able to predict pain ...

Prediction of Chemotherapy Response of Osteosarcoma Using Baseline F-FDG Textural Features Machine Learning Approaches with PCA.

Contrast media & molecular imaging
PURPOSE: Patients with high-grade osteosarcoma undergo several chemotherapy cycles before surgical intervention. Response to chemotherapy, however, is affected by intratumor heterogeneity. In this study, we assessed the ability of a machine learning ...

Artificial neural networks accurately predict intra-abdominal infection in moderately severe and severe acute pancreatitis.

Journal of digestive diseases
OBJECTIVE: The aim of this study was to evaluate the efficacy of artificial neural networks (ANN) in predicting intra-abdominal infection in moderately severe (MASP) and severe acute pancreatitis (SAP) compared with that of a logistic regression mode...

Denoising and artefact removal for transthoracic echocardiographic imaging in congenital heart disease: utility of diagnosis specific deep learning algorithms.

The international journal of cardiovascular imaging
Deep learning (DL) algorithms are increasingly used in cardiac imaging. We aimed to investigate the utility of DL algorithms in de-noising transthoracic echocardiographic images and removing acoustic shadowing artefacts specifically in patients with ...

Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice.

The Journal of pathology
The use of artificial intelligence will transform clinical practice over the next decade and the early impact of this will likely be the integration of image analysis and machine learning into routine histopathology. In the UK and around the world, a...

Deep learning outperformed 11 pathologists in the classification of histopathological melanoma images.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: The diagnosis of most cancers is made by a board-certified pathologist based on a tissue biopsy under the microscope. Recent research reveals a high discordance between individual pathologists. For melanoma, the literature reports on 25-2...