AIMC Topic: Predictive Value of Tests

Clear Filters Showing 1511 to 1520 of 2212 articles

Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI.

European radiology
OBJECTIVE: To investigate the value of machine learning (ML)-based high-dimensional quantitative texture analysis (qTA) on T2-weighted magnetic resonance imaging (MRI) in predicting response to somatostatin analogues (SA) in acromegaly patients with ...

Impact of a Pharmacist-Led Intervention on 30-Day Readmission and Assessment of Factors Predictive of Readmission in African American Men With Heart Failure.

American journal of men's health
Heart failure (HF) is responsible for more 30-day readmissions than any other condition. Minorities, particularly African American males (AAM), are at much higher risk for readmission than the general population. In this study, demographic, social, a...

Mobile detection of autism through machine learning on home video: A development and prospective validation study.

PLoS medicine
BACKGROUND: The standard approaches to diagnosing autism spectrum disorder (ASD) evaluate between 20 and 100 behaviors and take several hours to complete. This has in part contributed to long wait times for a diagnosis and subsequent delays in access...

Machine Learning Algorithms Utilizing Functional Respiratory Imaging May Predict COPD Exacerbations.

Academic radiology
RATIONALE AND OBJECTIVES: Acute chronic obstructive pulmonary disease exacerbations (AECOPD) have a significant negative impact on the quality of life and accelerate progression of the disease. Functional respiratory imaging (FRI) has the potential t...

Rapid Rule Out of Culture-Negative Bloodstream Infections by Use of a Novel Approach to Universal Detection of Bacteria and Fungi.

The journal of applied laboratory medicine
BACKGROUND: Currently it can take up to 5 days to rule out bloodstream infection. With the low yield of blood cultures (approximately 10%), a significant number of patients are potentially exposed to inappropriate therapy that can lead to adverse eve...

Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study.

PLoS medicine
BACKGROUND: Pneumothorax can precipitate a life-threatening emergency due to lung collapse and respiratory or circulatory distress. Pneumothorax is typically detected on chest X-ray; however, treatment is reliant on timely review of radiographs. Sinc...

Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists.

PLoS medicine
BACKGROUND: Chest radiograph interpretation is critical for the detection of thoracic diseases, including tuberculosis and lung cancer, which affect millions of people worldwide each year. This time-consuming task typically requires expert radiologis...