This study investigated the utilization of digital phenotypes and machine learning algorithms to predict impending panic symptoms in patients with mood and anxiety disorders. A cohort of 43 patients was monitored over a two-year period, with data col...
BACKGROUND: To retrospectively assess the added value of an artificial intelligence (AI) algorithm for detecting pulmonary nodules on ultra-low-dose computed tomography (ULDCT) performed at the emergency department (ED).
Diagnostic and interventional imaging
Nov 19, 2024
PURPOSE: The purpose of this study was to compare a conventional T1-weighted volumetric interpolated breath-hold examination (VIBE) sequence with a DL-reconstructed accelerated high-resolution VIBE sequence (HR-VIBE) in terms of image quality, lesion...
BACKGROUND: Esophageal fistula (EF), a rare and potentially fatal complication, can be better managed with predictive models for personalized treatment plans in esophageal cancers. We aim to develop a clinical-deep learning radiomics model for effect...
The specificity and sensitivity of a simple non-invasive multi-cancer screening method in detecting breast, lung, prostate, and colorectal cancer in breath samples were evaluated in a double-blind study. Breath samples of 1386 participants (59.7% mal...
PURPOSE: Growing interest in microperimetry (MP) or fundus-controlled perimetry as a targeted psychometric testing method in geographic atrophy (GA) is warranted because of the disease subclinical/extrafoveal appearance or preexisting foveal loss wit...
BACKGROUND: A high prevalence of disorders of gut-brain interaction (DGBI) exist in patients with hypermobile Ehlers-Danlos Syndrome (hEDS) and hypermobility spectrum disorders (HSD). However, it is unknown if clusters of hEDS/HSD patients exist whic...
Journal of applied clinical medical physics
Nov 14, 2024
OBJECTIVE: We investigated the feasibility of deep learning-based ultra-low dose kV-fan-beam computed tomography (kV-FBCT) image enhancement algorithm for clinical application in abdominal and pelvic tumor radiotherapy.
Artificial intelligence (AI) based treatment planning tools are being implemented in clinic. However, human interactions with such AI tools are rarely analyzed. This study aims to comprehend human planner's interaction with the AI planning tool and i...
OBJECTIVE: To assess the viability of using ultra-low radiation and contrast medium (CM) dosage in aortic computed tomography angiography (CTA) through the application of low tube voltage (60kVp) and a novel deep learning image reconstruction algorit...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.