AIMC Topic: Radiomics

Clear Filters Showing 231 to 240 of 618 articles

Lung nodule classification using radiomics model trained on degraded SDCT images.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Low-dose computed tomography (LDCT) screening has shown promise in reducing lung cancer mortality; however, it suffers from high false positive rates and a scarcity of available annotated datasets. To overcome these challeng...

Multimodal radiomics and deep learning models for predicting early femoral head deformity in LCPD.

European journal of radiology
PURPOSE: To develop a predictive model combining clinical, radiomic, and deep learning features based on X-ray and MRI to identify risk factors for early femoral head deformity in Legg-Calvé-Perthes disease (LCPD).

Deep learning radiomic nomogram outperforms the clinical model in distinguishing intracranial solitary fibrous tumors from angiomatous meningiomas and can predict patient prognosis.

European radiology
OBJECTIVES: To evaluate the value of a magnetic resonance imaging (MRI)-based deep learning radiomic nomogram (DLRN) for distinguishing intracranial solitary fibrous tumors (ISFTs) from angiomatous meningioma (AMs) and predicting overall survival (OS...

Multiparametric MRI Radiomics With Machine Learning for Differentiating HER2-Zero, -Low, and -Positive Breast Cancer: Model Development, Testing, and Interpretability Analysis.

AJR. American journal of roentgenology
MRI radiomics has been explored for three-tiered classification of HER2 expression levels (i.e., HER2-zero, HER2-low, or HER2-positive) in patients with breast cancer, although an understanding of how such models reach their predictions is lacking. ...

A Machine Learning Model Based on Global Mammographic Radiomic Features Can Predict Which Normal Mammographic Cases Radiology Trainees Find Most Difficult.

Journal of imaging informatics in medicine
This study aims to investigate whether global mammographic radiomic features (GMRFs) can distinguish hardest- from easiest-to-interpret normal cases for radiology trainees (RTs). Data from 137 RTs were analysed, with each interpreting seven education...

Using Machine Learning on MRI Radiomics to Diagnose Parotid Tumours Before Comparing Performance with Radiologists: A Pilot Study.

Journal of imaging informatics in medicine
The parotid glands are the largest of the major salivary glands. They can harbour both benign and malignant tumours. Preoperative work-up relies on MR images and fine needle aspiration biopsy, but these diagnostic tools have low sensitivity and speci...

Graph neural networks in multi-stained pathological imaging: extended comparative analysis of Radiomic features.

International journal of computer assisted radiology and surgery
PURPOSE: This study investigates the application of Radiomic features within graph neural networks (GNNs) for the classification of multiple-epitope-ligand cartography (MELC) pathology samples. It aims to enhance the diagnosis of often misdiagnosed s...