Computer methods and programs in biomedicine
Oct 23, 2024
BACKGROUND AND OBJECTIVE: Low-dose computed tomography (LDCT) screening has shown promise in reducing lung cancer mortality; however, it suffers from high false positive rates and a scarcity of available annotated datasets. To overcome these challeng...
AIM: To develop a machine learning-based CT radiomics model to preoperatively diagnose occult peritoneal metastasis (OPM) in advanced gastric cancer (AGC) patients.
OBJECTIVES: To evaluate the value of a magnetic resonance imaging (MRI)-based deep learning radiomic nomogram (DLRN) for distinguishing intracranial solitary fibrous tumors (ISFTs) from angiomatous meningioma (AMs) and predicting overall survival (OS...
AJR. American journal of roentgenology
Oct 16, 2024
MRI radiomics has been explored for three-tiered classification of HER2 expression levels (i.e., HER2-zero, HER2-low, or HER2-positive) in patients with breast cancer, although an understanding of how such models reach their predictions is lacking. ...
Journal of imaging informatics in medicine
Oct 15, 2024
This study aims to investigate whether global mammographic radiomic features (GMRFs) can distinguish hardest- from easiest-to-interpret normal cases for radiology trainees (RTs). Data from 137 RTs were analysed, with each interpreting seven education...
Journal of imaging informatics in medicine
Oct 10, 2024
The parotid glands are the largest of the major salivary glands. They can harbour both benign and malignant tumours. Preoperative work-up relies on MR images and fine needle aspiration biopsy, but these diagnostic tools have low sensitivity and speci...
International journal of computer assisted radiology and surgery
Oct 7, 2024
PURPOSE: This study investigates the application of Radiomic features within graph neural networks (GNNs) for the classification of multiple-epitope-ligand cartography (MELC) pathology samples. It aims to enhance the diagnosis of often misdiagnosed s...
PURPOSE: To assess the efficacy of radiomics features extracted from non-contrast computed tomography (NCCT) scans in differentiating multiple etiologies of spontaneous intracerebral hemorrhage (ICH).
OBJECTIVES: This study was designed to assess computed tomography (CT)-based radiomics of colorectal liver metastases (CRLM), extracted from posttreatment scans in estimating pathologic treatment response to neoadjuvant therapy, and to compare treatm...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.