AIMC Topic: Retrospective Studies

Clear Filters Showing 1181 to 1190 of 9539 articles

Using clinical data to reclassify ESUS patients to large artery atherosclerotic or cardioembolic stroke mechanisms.

Journal of neurology
PURPOSE: Embolic stroke of unidentified source (ESUS) represents 10-25% of all ischemic strokes. Our goal was to determine whether ESUS could be reclassified to cardioembolic (CE) or large-artery atherosclerosis (LAA) with machine learning (ML) using...

Improving the prediction of chemotherapy dose-limiting toxicity in colon cancer patients using an AI-CT-based 3D body composition of the entire L1-L5 lumbar spine.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
PURPOSE: Chemotherapy dose-limiting toxicities (DLT) pose a significant challenge in successful colon cancer treatment. Body composition analysis may enable tailored interventions thereby supporting the mitigation of chemotherapy toxic effects. This ...

Identifying threshold of CT-defined muscle loss after radiotherapy for survival in oral cavity cancer using machine learning.

European radiology
OBJECTIVES: Muscle loss after radiotherapy is associated with poorer survival in patients with oral cavity squamous cell carcinoma (OCSCC). However, the threshold of muscle loss remains unclear. This study aimed to utilize explainable artificial inte...

Machine learning based prediction model for bile leak following hepatectomy for liver cancer.

HPB : the official journal of the International Hepato Pancreato Biliary Association
OBJECTIVE: We sought to develop a machine learning (ML) preoperative model to predict bile leak following hepatectomy for primary and secondary liver cancer.

Neural networks for predicting etiological diagnosis of uveitis.

Eye (London, England)
BACKGROUND/OBJECTIVES: The large number and heterogeneity of causes of uveitis make the etiological diagnosis a complex task. The clinician must consider all the information concerning the ophthalmological and extra-ophthalmological features of the p...

Assessing the prognostic impact of body composition phenotypes on surgical outcomes and survival in patients with spinal metastasis: a deep learning approach to preoperative CT analysis.

Journal of neurosurgery. Spine
OBJECTIVE: The prognostic significance of body composition phenotypes for survival in patients undergoing surgical intervention for spinal metastases has not yet been elucidated. This study aimed to elucidate the impact of body composition phenotypes...

AI-assisted detection for chest X-rays (AID-CXR): a multi-reader multi-case study protocol.

BMJ open
INTRODUCTION: A chest X-ray (CXR) is the most common imaging investigation performed worldwide. Advances in machine learning and computer vision technologies have led to the development of several artificial intelligence (AI) tools to detect abnormal...