SUMMARY: In single-cell transcriptomics, inconsistent cell type annotations due to varied naming conventions and hierarchical granularity impede data integration, machine learning applications, and meaningful evaluations. To address this challenge, w...
The development of single-cell and spatial transcriptomics has revolutionized our capacity to investigate cellular properties, functions, and interactions in both cellular and spatial contexts. Despite this progress, the analysis of single-cell and s...
With the rapid advances in single-cell sequencing technology, it is now feasible to conduct in-depth genetic analysis in individual cells. Study on the dynamics of single cells in response to perturbations is of great significance for understanding t...
Low-pass single-cell DNA sequencing technologies and algorithmic advancements have enabled haplotype-specific copy number calling on thousands of cells within tumors. However, measurement uncertainty may result in spurious CNAs inconsistent with real...
Using transcriptomic profiling at single-cell resolution, we investigated cell-intrinsic and cell-extrinsic signatures associated with pathogenesis and inflammation-driven fibrosis in both adult and pediatric patients with localized scleroderma (LS)....
BACKGROUND: Clustering scRNA-seq data plays a vital role in scRNA-seq data analysis and downstream analyses. Many computational methods have been proposed and achieved remarkable results. However, there are several limitations of these methods. First...
BACKGROUND: Neutrophils play a key role in the tumor microenvironment (TME); however, their functions in glioblastoma (GBM) are overlooked and insufficiently studied. A detailed analysis of GBM-associated neutrophil (GBMAN) subpopulations may offer n...
Joint analysis of transcriptomic and T cell receptor (TCR) features at single-cell resolution provides a powerful approach for in-depth T cell immune function research. Here, we introduce a deep learning framework for single-T cell transcriptome and ...
Single-cell omics has emerged as a powerful tool for elucidating cellular heterogeneity in health and disease. Parallel advances in artificial intelligence (AI), particularly in pattern recognition, feature extraction and predictive modelling, now of...
The microarray and single-cell RNA-sequencing (scRNA-seq) datasets of hepatocellular carcinoma (HCC) were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (W...