AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Transcription Factors

Showing 1 to 10 of 189 articles

Clear Filters

A KAN-based hybrid deep neural networks for accurate identification of transcription factor binding sites.

PloS one
BACKGROUND: Predicting protein-DNA binding sites in vivo is a challenging but urgent task in many fields such as drug design and development. Most promoters contain many transcription factor (TF) binding sites, yet only a few have been identified thr...

Galactose-Induced Cataracts in Rats: A Machine Learning Analysis.

International journal of medical sciences
Rat models are widely used to study cataracts due to their cost-effectiveness and prominent physiological and genetic similarities to humans The objective of this study was to identify genes involved in cataractogenesis due to galactose exposure in ...

Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data.

Nucleic acids research
Gene regulatory networks (GRNs) provide a global representation of how genetic/genomic information is transferred in living systems and are a key component in understanding genome regulation. Single-cell multiome data provide unprecedented opportunit...

Transfer learning reveals sequence determinants of the quantitative response to transcription factor dosage.

Cell genomics
Deep learning models have advanced our ability to predict cell-type-specific chromatin patterns from transcription factor (TF) binding motifs, but their application to perturbed contexts remains limited. We applied transfer learning to predict how co...

CacPred: a cascaded convolutional neural network for TF-DNA binding prediction.

BMC genomics
BACKGROUND: Transcription factors (TFs) regulate the genes' expression by binding to DNA sequences. Aligned TFBSs of the same TF are seen as cis-regulatory motifs, and substantial computational efforts have been invested to find motifs. In recent yea...

Neural network conditioned to produce thermophilic protein sequences can increase thermal stability.

Scientific reports
This work presents Neural Optimization for Melting-temperature Enabled by Leveraging Translation (NOMELT), a novel approach for designing and ranking high-temperature stable proteins using neural machine translation. The model, trained on over 4 mill...

TRAPT: a multi-stage fused deep learning framework for predicting transcriptional regulators based on large-scale epigenomic data.

Nature communications
It is challenging to identify regulatory transcriptional regulators (TRs), which control gene expression via regulatory elements and epigenomic signals, in context-specific studies on the onset and progression of diseases. The use of large-scale mult...

Predictive biophysical neural network modeling of a compendium of in vivo transcription factor DNA binding profiles for Escherichia coli.

Nature communications
The DNA binding of most Escherichia coli Transcription Factors (TFs) has not been comprehensively mapped, and few have models that can quantitatively predict binding affinity. We report the global mapping of in vivo DNA binding for 139 E. coli TFs us...

Integrating genetic variation with deep learning provides context for variants impacting transcription factor binding during embryogenesis.

Genome research
Understanding how genetic variation impacts transcription factor (TF) binding remains a major challenge, limiting our ability to model disease-associated variants. Here, we used a highly controlled system of F crosses with extensive genetic diversity...