AIMC Topic: Treatment Outcome

Clear Filters Showing 121 to 130 of 3202 articles

Multimodal deep learning for predicting PD-L1 biomarker and clinical immunotherapy outcomes of esophageal cancer.

Frontiers in immunology
Although the immune checkpoint inhibitors (ICIs) have demonstrated remarkable anti-tumor efficacy in solid tumors, the proportion of ESCC patients who benefit from ICIs remains limited. Current biomarkers have assisted in identifying potential respon...

Artificial intelligence-driven translational medicine: a machine learning framework for predicting disease outcomes and optimizing patient-centric care.

Journal of translational medicine
BACKGROUND: Advancements in artificial intelligence (AI) and machine learning (ML) have revolutionized the medical field and transformed translational medicine. These technologies enable more accurate disease trajectory models while enhancing patient...

Generative AI-Enabled Therapy Support Tool for Improved Clinical Outcomes and Patient Engagement in Group Therapy: Real-World Observational Study.

Journal of medical Internet research
BACKGROUND: Cognitive behavioral therapy (CBT) is a highly effective treatment for depression and anxiety disorders. Nonetheless, a substantial proportion of patients do not respond to treatment. The lack of engagement with therapeutic materials and ...

Outcomes of lateral femoral cutaneous nerve decompression surgery in meralgia paraesthetica: assessment of pain, sensory deficits, and quality of life.

International orthopaedics
PURPOSE: Meralgia paraesthetica (MP) is a rare neuropathy of the lateral femoral cutaneous nerve (LFCN), characterized by thigh pain, paraesthesia, or sensory loss. When conservative treatments fail, surgical interventions such as neurolysis or neure...

Combined effects and timing of robotic training and botulinum toxin on upper limb spasticity and motor function: a single‑blinded randomized controlled pilot study.

Journal of neuroengineering and rehabilitation
BACKGROUND: This study aimed to evaluate the combined effects of robotic training (RT) and botulinum toxin (BTX) injections on motor function and spasticity in individuals with post-stroke upper limb spasticity (ULS). We also sought to investigate th...

A machine learning approach to predict treatment efficacy and adverse effects in major depression using CYP2C19 and clinical-environmental predictors.

Psychiatric genetics
BACKGROUND: Major depressive disorder (MDD) is among the leading causes of disability worldwide and treatment efficacy is variable across patients. Polymorphisms in cytochrome P450 2C19 (CYP2C19) play a role in response and side effects to medication...

Predicting the complexity of minimally invasive liver resection for hepatocellular carcinoma using machine learning.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: Despite technical advancements, minimally invasive liver surgery (MILS) for hepatocellular carcinoma (HCC) remains challenging. Nonetheless, effective tools to assess MILS complexity are still lacking. Machine learning (ML) models could i...