AIMC Topic: Aged

Clear Filters Showing 1011 to 1020 of 13246 articles

Vascular-related biological stress, DNA methylation, allostatic load and domain-specific cognition: an integrated machine learning and causal inference approach.

BMC neurology
BACKGROUND: Vascular disease in aging populations spans a wide range of disorders including strokes, circulation disorders and hypertension. As individuals age, vascular disorders co-occur and hence exert combined effects. In the present study we int...

Elucidating predictors of preoperative acute heart failure in older people with hip fractures through machine learning and SHAP analysis: a retrospective cohort study.

BMC geriatrics
BACKGROUND: Acute heart failure (AHF) has become a significant challenge in older people with hip fractures. Timely identification and assessment of preoperative AHF have become key factors in reducing surgical risks and improving outcomes.

Comparison of machine learning models with conventional statistical methods for prediction of percutaneous coronary intervention outcomes: a systematic review and meta-analysis.

BMC cardiovascular disorders
INTRODUCTION: Percutaneous coronary intervention (PCI) has been the main treatment of coronary artery disease (CAD). In this review, we aimed to compare the performance of machine learning (ML) vs. logistic regression (LR) models in predicting differ...

Development and validation of a machine learning risk prediction model for asthma attacks in adults in primary care.

NPJ primary care respiratory medicine
Primary care consultations provide an opportunity for patients and clinicians to assess asthma attack risk. Using a data-driven risk prediction tool with routinely collected health records may be an efficient way to aid promotion of effective self-ma...

Association of acute kidney injury with 1-year mortality in granulomatosis with polyangiitis patients: a cohort study using mediation analyses and machine learning.

Rheumatology international
To investigate the correlation between acute kidney injury (AKI) and 1-year mortality in patients with granulomatosis with polyangiitis (GPA). Clinical data for GPA patients were extracted from the MIMIC-IV (version 3.0) database. Logistic and Cox re...

Machine learning technique-based four-autoantibody test for early detection of esophageal squamous cell carcinoma: a multicenter, retrospective study with a nested case-control study.

BMC medicine
BACKGROUND: Autoantibodies represent promising diagnostic blood-based biomarkers that may be generated prior to the first clinically detectable signs of cancers. In present study, we aimed to identify a novel optimized autoantibody panel with high di...

Constructing a neural network model based on tumor-infiltrating lymphocytes (TILs) to predict the survival of hepatocellular carcinoma patients.

PeerJ
BACKGROUND: Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide, and early pathological diagnosis is crucial for formulating treatment plans. Despite the widespread attention to pathology in the treatment of HCC patients,...

Prostate Cancer Risk Stratification and Scan Tailoring Using Deep Learning on Abbreviated Prostate MRI.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: MRI plays a critical role in prostate cancer (PCa) detection and management. Bi-parametric MRI (bpMRI) offers a faster, contrast-free alternative to multi-parametric MRI (mpMRI). Routine use of mpMRI for all patients may not be necessary,...

The establishment of machine learning prognostic prediction models for pineal region tumors based on SEER-A multicenter real-world study.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
BACKGROUND: Pineal region tumors (PRT) are rare intracranial neoplasms with diverse pathological types and growth characteristics, leading to varied clinical manifestations. This study aims to develop machine learning (ML) models for survival predict...