AIMC Topic: Aged

Clear Filters Showing 3621 to 3630 of 13235 articles

Prediction model for major bleeding in anticoagulated patients with cancer-associated venous thromboembolism using machine learning and natural language processing.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
PURPOSE: We developed a predictive model to assess the risk of major bleeding (MB) within 6 months of primary venous thromboembolism (VTE) in cancer patients receiving anticoagulant treatment. We also sought to describe the prevalence and incidence o...

Radiomics machine learning algorithm facilitates detection of small pancreatic neuroendocrine tumors on CT.

Diagnostic and interventional imaging
PURPOSE: The purpose of this study was to develop a radiomics-based algorithm to identify small pancreatic neuroendocrine tumors (PanNETs) on CT and evaluate its robustness across manual and automated segmentations, exploring the feasibility of autom...

Machine Learning in Clinical Diagnosis of Head and Neck Cancer.

Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery
OBJECTIVE: Machine learning has been effective in other areas of medicine, this study aims to investigate this with regards to HNC and identify which algorithm works best to classify malignant patients.

Deep learning constrained compressed sensing reconstruction improves high-resolution three-dimensional (3D) T2-weighted turbo spin echo magnetic resonance imaging (MRI) of the lumbar spine.

Clinical radiology
AIM: We sought to assess the image quality of three-dimensional (3D) T2-weighted (T2w) turbo spin echo (TSE) sequences with deep learning (DL)-constrained compressed sensing (CS) reconstruction relative to a reference two-dimensional (2D) T2w TSE seq...

Machine learning predicts acute respiratory failure in pancreatitis patients: A retrospective study.

International journal of medical informatics
PURPOSE: The purpose of the research is to design an algorithm to predict the occurrence of acute respiratory failure (ARF) in patients with acute pancreatitis (AP).

Development and validation of machine learning models for predicting cancer-related fatigue in lymphoma survivors.

International journal of medical informatics
BACKGROUND: New cases of lymphoma are rising, and the symptom burden, like cancer-related fatigue (CRF), severely impacts the quality of life of lymphoma survivors. However, clinical diagnosis and treatment of CRF are inadequate and require enhanceme...

Development and validation of cardiometabolic risk predictive models based on LDL oxidation and candidate geromarkers from the MARK-AGE data.

Mechanisms of ageing and development
The predictive value of the susceptibility to oxidation of LDL particles (LDLox) in cardiometabolic risk assessment is incompletely understood. The main objective of the current study was to assess its relationship with other relevant biomarkers and ...

Multitask machine learning-based tumor-associated collagen signatures predict peritoneal recurrence and disease-free survival in gastric cancer.

Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association
BACKGROUND: Accurate prediction of peritoneal recurrence for gastric cancer (GC) is crucial in clinic. The collagen alterations in tumor microenvironment affect the migration and treatment response of cancer cells. Herein, we proposed multitask machi...

Artificial Intelligence Algorithm Can Predict Lymph Node Malignancy from Endobronchial Ultrasound Transbronchial Needle Aspiration Images for Non-Small Cell Lung Cancer.

Respiration; international review of thoracic diseases
INTRODUCTION: Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) for lung cancer staging is operator dependent, resulting in high rates of non-diagnostic lymph node (LN) samples. We hypothesized that an artificial intelligence (AI)...