AIMC Topic: Biomarkers

Clear Filters Showing 311 to 320 of 1805 articles

Understanding Parkinson's: The microbiome and machine learning approach.

Maturitas
OBJECTIVE: Given that Parkinson's disease is a progressive disorder, with symptoms that worsen over time, our goal is to enhance the diagnosis of Parkinson's disease by utilizing machine learning techniques and microbiome analysis. The primary object...

Deep Learning-Enabled Rapid Metabolic Decoding of Small Extracellular Vesicles via Dual-Use Mass Spectroscopy Chip Array.

Analytical chemistry
The increasing focus of small extracellular vesicles (sEVs) in liquid biopsy has created a significant demand for streamlined improvements in sEV isolation methods, efficient collection of high-quality sEV data, and powerful rapid analysis of large d...

Identification and experimental validation of diagnostic and prognostic genes CX3CR1, PID1 and PTGDS in sepsis and ARDS using bulk and single-cell transcriptomic analysis and machine learning.

Frontiers in immunology
BACKGROUND: Sepsis is an uncontrolled reaction to infection that causes severe organ dysfunction and is a primary cause of ARDS. Patients suffering both sepsis and ARDS have a poor prognosis and high mortality. However, the mechanisms behind their si...

Identification of hub genes, diagnostic model, and immune infiltration in preeclampsia by integrated bioinformatics analysis and machine learning.

BMC pregnancy and childbirth
PURPOSE: This study aimed to identify novel biomarkers for preeclampsia (PE) diagnosis by integrating Weighted Gene Co-expression Network Analysis (WGCNA) with machine learning techniques.

Identification and validation of susceptibility modules and hub genes in polyarticular juvenile idiopathic arthritis using WGCNA and machine learning.

Autoimmunity
BACKGROUND: Juvenile idiopathic arthritis (JIA), superseding juvenile rheumatoid arthritis (JRA), is a chronic autoimmune disease affecting children and characterized by various types of childhood arthritis. JIA manifests clinically with joint inflam...

Machine Learning Correlation of Electron Micrographs and ToF-SIMS for the Analysis of Organic Biomarkers in Mudstone.

Journal of the American Society for Mass Spectrometry
The spatial distribution of organics in geological samples can be used to determine when and how these organics were incorporated into the host rock. Mass spectrometry (MS) imaging can rapidly collect a large amount of data, but ions produced are mix...

Identification and validation of the diagnostic biomarker MFAP5 for CAVD with type 2 diabetes by bioinformatics analysis.

Frontiers in immunology
INTRODUCTION: Calcific aortic valve disease (CAVD) is increasingly prevalent among the aging population, and there is a notable lack of drug therapies. Consequently, identifying novel drug targets will be of utmost importance. Given that type 2 diabe...

Effects of prolonged oxytetracycline supplementation on freshwater stinging catfish (): a multi-biomarker approach.

Frontiers in immunology
BACKGROUND: Aquaculture systems that sporadically depend on antibiotics can contribute to the development of adverse effects on the fish, microbial flora and the environment. This study sought to investigate the impacts of extended oxytetracycline su...

Evaluation of a machine learning-based metabolic marker for coronary artery disease in the UK Biobank.

Atherosclerosis
BACKGROUND AND AIMS: An in silico quantitative score of coronary artery disease (ISCAD), built using machine learning and clinical data from electronic health records, has been shown to result in gradations of risk of subclinical atherosclerosis, cor...