AIMC Topic: Body Mass Index

Clear Filters Showing 1 to 10 of 243 articles

A supervised machine learning approach with feature selection for sex-specific biomarker prediction.

NPJ systems biology and applications
Biomarkers are crucial in aiding in disease diagnosis, prognosis, and treatment selection. Machine learning (ML) has emerged as an effective tool for identifying novel biomarkers and enhancing predictive modelling. However, sex-based bias in ML algor...

The utility of an artificial intelligence model based on decision tree and evolution algorithm to evaluate steatotic liver disease in a primary care setting.

Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas
Many ways of classifying steatotic liver disease (SLD) with metabolic conditions have been proposed. Thus, SLD-related variables were verified using a decision tree. We tested if the suggested components of the actual classification (metabolic dysfun...

Type 2 Diabetes in Taiwan: Unmasking Influential Factors Through Advanced Predictive Modeling.

Journal of diabetes research
Type 2 diabetes (T2D) is influenced by lifestyle, genetics, and environmental conditions. By utilizing machine learning techniques, we can enhance the precision of T2D risk prediction by analyzing the complex interactions among these variables. This...

Preterm birth trends and risk factors in a multi-ethnic Asian population: A retrospective study from 2017 to 2023, can we screen and predict this?

Annals of the Academy of Medicine, Singapore
INTRODUCTION: Preterm birth (PTB) remains a leading cause of perinatal morbidity and mortality worldwide. Understanding Singapore's PTB trends and associated risk factors can inform effective strategies for screening and intervention. This study anal...

Uncovering key factors in weight loss effectiveness through machine learning.

International journal of obesity (2005)
BACKGROUND/OBJECTIVES: One of the main challenges in weight loss is the dramatic interindividual variability in response to treatment. We aim to systematically identify factors relevant to weight loss effectiveness using machine learning (ML).

Development and validation of machine learning models for predicting low muscle mass in patients with obesity and diabetes.

Lipids in health and disease
BACKGROUND AND AIMS: Low muscle mass (LMM) is a critical complication in patients with obesity and diabetes, exacerbating metabolic and cardiovascular risks. Novel obesity indices, such as the body roundness index (BRI), conicity index, and relative ...

Predicting Weight Loss Success After Gastric Sleeve Surgery: A Machine Learning-Based Approach.

Nutrients
BACKGROUND/OBJECTIVES: Obesity is a global health issue, and in this context, bariatric surgery is considered the most effective treatment for severe cases. However, postoperative outcomes vary widely among individuals, driving the development of too...

Obesity classification: a comparative study of machine learning models excluding weight and height data.

Revista da Associacao Medica Brasileira (1992)
OBJECTIVE: Obesity is a global health problem. The aim is to analyze the effectiveness of machine learning models in predicting obesity classes and to determine which model performs best in obesity classification.