AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Disease Progression

Showing 131 to 140 of 703 articles

Clear Filters

Deep representation learning from electronic medical records identifies distinct symptom based subtypes and progression patterns for COVID-19 prognosis.

International journal of medical informatics
OBJECTIVE: Symptoms are significant kind of phenotypes for managing and controlling of the burst of acute infectious diseases, such as COVID-19. Although patterns of symptom clusters and time series have been considered the high potential prediction ...

Machine learning for predicting cognitive decline within five years in Parkinson's disease: Comparing cognitive assessment scales with DAT SPECT and clinical biomarkers.

PloS one
OBJECTIVE: Parkinson's disease (PD) is an age-related neurodegenerative condition characterized mostly by motor symptoms. Although a wide range of non-motor symptoms (NMS) are frequently experienced by PD patients. One of the important and common NMS...

Explainable machine learning on baseline MRI predicts multiple sclerosis trajectory descriptors.

PloS one
Multiple sclerosis (MS) is a multifaceted neurological condition characterized by challenges in timely diagnosis and personalized patient management. The application of Artificial Intelligence (AI) to MS holds promises for early detection, accurate d...

Identifying potential targets for preventing cancer progression through the PLA2G1B recombinant protein using bioinformatics and machine learning methods.

International journal of biological macromolecules
Lung cancer is the deadliest and most aggressive malignancy in the world. Preventing cancer is crucial. Therefore, the new molecular targets have laid the foundation for molecular diagnosis and targeted therapy of lung cancer. PLA2G1B plays a key rol...

Disentangling brain atrophy heterogeneity in Alzheimer's disease: A deep self-supervised approach with interpretable latent space.

NeuroImage
Alzheimer's disease (AD) is heterogeneous, but existing methods for capturing this heterogeneity through dimensionality reduction and unsupervised clustering have limitations when it comes to extracting intricate atrophy patterns. In this study, we p...

Explainable Deep-Learning-Based Gait Analysis of Hip-Knee Cyclogram for the Prediction of Adolescent Idiopathic Scoliosis Progression.

Sensors (Basel, Switzerland)
Accurate prediction of scoliotic curve progression is crucial for guiding treatment decisions in adolescent idiopathic scoliosis (AIS). Traditional methods of assessing the likelihood of AIS progression are limited by variability and rely on static m...

Metabolism score and machine learning models for the prediction of esophageal squamous cell carcinoma progression.

Cancer science
The incomplete prediction of prognosis in esophageal squamous cell carcinoma (ESCC) patients is attributed to various therapeutic interventions and complex prognostic factors. Consequently, there is a pressing demand for enhanced predictive biomarker...

Development of a machine learning-based model for the prediction and progression of diabetic kidney disease: A single centred retrospective study.

International journal of medical informatics
BACKGROUND: Diabetic kidney disease (DKD) is a diabetic microvascular complication often characterized by an unpredictable progression. Hence, early detection and recognition of patients vulnerable to progression is crucial.

CFINet: Cross-Modality MRI Feature Interaction Network for Pseudoprogression Prediction of Glioblastoma.

Journal of computational biology : a journal of computational molecular cell biology
Pseudoprogression (PSP) is a related reaction of glioblastoma treatment, and misdiagnosis can lead to unnecessary intervention. Magnetic resonance imaging (MRI) provides cross-modality images for PSP prediction studies. However, how to effectively us...

Artificial intelligence-driven multiomics predictive model for abdominal aortic aneurysm subtypes to identify heterogeneous immune cell infiltration and predict disease progression.

International immunopharmacology
BACKGROUND: Abdominal aortic aneurysm (AAA) poses a significant health risk and is influenced by various compositional features. This study aimed to develop an artificial intelligence-driven multiomics predictive model for AAA subtypes to identify he...