AIMC Topic: Gene Expression Profiling

Clear Filters Showing 471 to 480 of 1308 articles

Sex dimorphism of IL-17-secreting peripheral blood mononuclear cells in ankylosing spondylitis based on bioinformatics analysis and machine learning.

BMC musculoskeletal disorders
BACKGROUND: Ankylosing spondylitis (AS) with radiographic damage is more prevalent in men than in women. IL-17, which is mainly secreted from peripheral blood mononuclear cells (PBMCs), plays an important role in the development of AS. Its expression...

Integrated analysis of single-cell sequencing and machine learning identifies a signature based on monocyte/macrophage hub genes to analyze the intracranial aneurysm associated immune microenvironment.

Frontiers in immunology
Monocytes are pivotal immune cells in eliciting specific immune responses and can exert a significant impact on the progression, prognosis, and immunotherapy of intracranial aneurysms (IAs). The objective of this study was to identify monocyte/macrop...

Identifying novel circadian rhythm biomarkers for diagnosis and prognosis of melanoma by an integrated bioinformatics and machine learning approach.

Aging
Melanoma is a highly malignant skin tumor with poor prognosis. Circadian rhythm is closely related to melanoma pathogenesis. This study aimed to identify key circadian rhythm genes (CRGs) in melanoma and explore their potential as diagnostic and prog...

Machine Learning-Based Etiologic Subtyping of Ischemic Stroke Using Circulating Exosomal microRNAs.

International journal of molecular sciences
Ischemic stroke is a major cause of mortality worldwide. Proper etiological subtyping of ischemic stroke is crucial for tailoring treatment strategies. This study explored the utility of circulating microRNAs encapsulated in extracellular vesicles (E...

NNICE: a deep quantile neural network algorithm for expression deconvolution.

Scientific reports
The composition of cell-type is a key indicator of health. Advancements in bulk gene expression data curation, single cell RNA-sequencing technologies, and computational deconvolution approaches offer a new perspective to learn about the composition ...

Decoding temporal heterogeneity in NSCLC through machine learning and prognostic model construction.

World journal of surgical oncology
BACKGROUND: Non-small cell lung cancer (NSCLC) is a prevalent and heterogeneous disease with significant genomic variations between the early and advanced stages. The identification of key genes and pathways driving NSCLC tumor progression is critica...

A comprehensive analysis of m6A/m7G/m5C/m1A-related gene expression and immune infiltration in liver ischemia-reperfusion injury by integrating bioinformatics and machine learning algorithms.

European journal of medical research
BACKGROUND: Liver ischemia-reperfusion injury (LIRI) is closely associated with immune infiltration, which commonly occurs after liver surgery, especially liver transplantation. Therefore, it is crucial to identify the genes responsible for LIRI and ...

Thinking Beyond Disease Silos: Dysregulated Genes Common in Tuberculosis and Lung Cancer as Identified by Systems Biology and Machine Learning.

Omics : a journal of integrative biology
The traditional way of thinking about human diseases across clinical and narrow phenomics silos often masks the underlying shared molecular substrates across human diseases. One Health and planetary health fields particularly address such complexitie...

Unveiling Immune-related feature genes for Alzheimer's disease based on machine learning.

Frontiers in immunology
The identification of diagnostic and therapeutic biomarkers for Alzheimer's Disease (AD) remains a crucial area of research. In this study, utilizing the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm, we identified RHBDF2 and TNFRSF1...