Computational and mathematical methods in medicine
Jan 12, 2022
Infection diseases are among the top global issues with negative impacts on health, economy, and society as a whole. One of the most effective ways to detect these diseases is done by analysing the microscopic images of blood cells. Artificial intell...
Computational intelligence and neuroscience
Jan 12, 2022
Blood cell count is highly useful in identifying the occurrence of a particular disease or ailment. To successfully measure the blood cell count, sophisticated equipment that makes use of invasive methods to acquire the blood cell slides or images is...
Introduction White blood cells (WBCs) are immunity cells which fight against viruses and bacteria in the human body. Microscope images of captured WBCs for processing and analysis are important to interpret the body condition. At present, there is no...
BACKGROUND: Differentiating and counting various types of white blood cells (WBC) in bone marrow smears allows the detection of infection, anemia, and leukemia or analysis of a process of treatment. However, manually locating, identifying, and counti...
BACKGROUND: Viral infections are prevalent in human cancers and they have great diagnostic and theranostic values in clinical practice. Recently, their potential of shaping the tumor immune microenvironment (TIME) has been related to the immunotherap...
This article addresses a new method for the classification of white blood cells (WBCs) using image processing techniques and machine learning methods. The proposed method consists of three steps: detecting the nucleus and cytoplasm, extracting featur...
Fast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes. However, there is an i...
Convolutional neural networks (CNNs) excel as powerful tools for biomedical image classification. It is commonly assumed that training CNNs requires large amounts of annotated data. This is a bottleneck in many medical applications where annotation r...
We evaluated the utility of leucocyte epigenomic-biomarkers for Alzheimer's Disease (AD) detection and elucidates its molecular pathogeneses. Genome-wide DNA methylation analysis was performed using the Infinium MethylationEPIC BeadChip array in 24 l...
ATAC-seq is a widely-applied assay used to measure genome-wide chromatin accessibility; however, its ability to detect active regulatory regions can depend on the depth of sequencing coverage and the signal-to-noise ratio. Here we introduce AtacWorks...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.