AIMC Topic: Mice, Knockout

Clear Filters Showing 11 to 20 of 22 articles

Machine learning predicts putative hematopoietic stem cells within large single-cell transcriptomics data sets.

Experimental hematology
Hematopoietic stem cells (HSCs) are an essential source and reservoir for normal hematopoiesis, and their function is compromised in many blood disorders. HSC research has benefitted from the recent development of single-cell molecular profiling tech...

Detection and Classification of Novel Renal Histologic Phenotypes Using Deep Neural Networks.

The American journal of pathology
With the advent and increased accessibility of deep neural networks (DNNs), complex properties of histologic images can be rigorously and reproducibly quantified. We used DNN-based transfer learning to analyze histologic images of periodic acid-Schif...

Real-time analysis of the behaviour of groups of mice via a depth-sensing camera and machine learning.

Nature biomedical engineering
Preclinical studies of psychiatric disorders use animal models to investigate the impact of environmental factors or genetic mutations on complex traits such as decision-making and social interactions. Here, we introduce a method for the real-time an...

Refining humane endpoints in mouse models of disease by systematic review and machine learning-based endpoint definition.

ALTEX
Ideally, humane endpoints allow for early termination of experiments by minimizing an animal's discomfort, distress and pain, while ensuring that scientific objectives are reached. Yet, lack of commonly agreed methodology and heterogeneity of cut-off...

Morphometric analysis of peripheral myelinated nerve fibers through deep learning.

Journal of the peripheral nervous system : JPNS
Irrespective of initial causes of neurological diseases, these disorders usually exhibit two key pathological changes-axonal loss or demyelination or a mixture of the two. Therefore, vigorous quantification of myelin and axons is essential in studyin...

Deep learning-based quantification of abdominal fat on magnetic resonance images.

PloS one
Obesity is increasingly prevalent and associated with increased risk of developing type 2 diabetes, cardiovascular diseases, and cancer. Magnetic resonance imaging (MRI) is an accurate method for determination of body fat volume and distribution. How...

TIGERi: modeling and visualizing the responses to perturbation of a transcription factor network.

BMC bioinformatics
BACKGROUND: Transcription factor (TF) networks play a key role in controlling the transfer of genetic information from gene to mRNA. Much progress has been made on understanding and reverse-engineering TF network topologies using a range of experimen...