AIMC Topic: Mutation

Clear Filters Showing 51 to 60 of 636 articles

Deep mutational learning for the selection of therapeutic antibodies resistant to the evolution of Omicron variants of SARS-CoV-2.

Nature biomedical engineering
Most antibodies for treating COVID-19 rely on binding the receptor-binding domain (RBD) of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). However, Omicron and its sub-lineages, as well as other heavily mutated variants, have rendered m...

Machine learning identifies clinical tumor mutation landscape pathways of resistance to checkpoint inhibitor therapy in NSCLC.

Journal for immunotherapy of cancer
BACKGROUND: Immune checkpoint inhibitors (CPIs) have revolutionized cancer therapy for several tumor indications. However, a substantial fraction of patients treated with CPIs derive no benefit or have short-lived responses to CPI therapy. Identifyin...

Performance of Machine Learning Models in Predicting BRAF Alterations Using Imaging Data in Low-Grade Glioma: A Systematic Review and Meta-Analysis.

World neurosurgery
BACKGROUND: Understanding the BRAF alterations preoperatively could remarkably assist in predicting tumor behavior, which leads to a more precise prognostication and management strategy. Recent advances in artificial intelligence (AI) have resulted i...

Identification of a gene signature and prediction of overall survival of patients with stage IV colorectal cancer using a novel machine learning approach.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
OBJECTIVE: We sought to characterize unique gene signature patterns associated with worse overall survival (OS) among patients with stage IV colorectal cancer (CRC) using a machine learning (ML) approach.

Deep learning-driven semi-rational design in phenylalanine ammonia-lyase for enhanced catalytic efficiency.

International journal of biological macromolecules
Phenylalanine ammonia-lyase (PAL) possesses significant potential in agriculture, industry, and the treatment of various diseases, including cancer. In particular, PAL derived from Anabaena variabilis (AvPAL) has been successfully utilized in clinica...

Breaking barriers: noninvasive AI model for BRAF mutation identification.

International journal of computer assisted radiology and surgery
OBJECTIVE: BRAF is the most common mutation found in thyroid cancer and is particularly associated with papillary thyroid carcinoma (PTC). Currently, genetic mutation detection relies on invasive procedures. This study aimed to extract radiomic featu...

A deep-learning model for predicting tyrosine kinase inhibitor response from histology in gastrointestinal stromal tumor.

The Journal of pathology
Over 90% of gastrointestinal stromal tumors (GISTs) harbor mutations in KIT or PDGFRA that can predict response to tyrosine kinase inhibitor (TKI) therapies, as recommended by NCCN (National Comprehensive Cancer Network) guidelines. However, gene seq...

Functionally characterizing obesity-susceptibility genes using CRISPR/Cas9, in vivo imaging and deep learning.

Scientific reports
Hundreds of loci have been robustly associated with obesity-related traits, but functional characterization of candidate genes remains a bottleneck. Aiming to systematically characterize candidate genes for a role in accumulation of lipids in adipocy...

Self-supervised machine learning methods for protein design improve sampling but not the identification of high-fitness variants.

Science advances
Machine learning (ML) is changing the world of computational protein design, with data-driven methods surpassing biophysical-based methods in experimental success. However, they are most often reported as case studies, lack integration and standardiz...