AIMC Topic: Neoplasm Staging

Clear Filters Showing 261 to 270 of 529 articles

Short-term outcomes of robot-assisted versus conventional laparoscopic surgery for early-stage endometrial cancer: A retrospective, single-center study.

The journal of obstetrics and gynaecology research
AIM: We compared the short-term outcomes between conventional laparoscopic surgery (CLS) and robot-assisted surgery (RAS) to assess the technical feasibility of the latter for early-stage endometrial cancer.

CT-based radiomic features to predict pathological response in rectal cancer: A retrospective cohort study.

Journal of medical imaging and radiation oncology
INTRODUCTION: Innovative biomarkers to predict treatment response in rectal cancer would be helpful in optimizing personalized treatment approaches. In this study, we aimed to develop and validate a CT-based radiomic imaging biomarker to predict path...

Radiomics and deep learning in lung cancer.

Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
Lung malignancies have been extensively characterized through radiomics and deep learning. By providing a three-dimensional characterization of the lesion, models based on radiomic features from computed tomography (CT) and positron-emission tomograp...

High spatiotemporal resolution dynamic contrast-enhanced MRI improves the image-based discrimination of histopathology risk groups of peripheral zone prostate cancer: a supervised machine learning approach.

European radiology
OBJECTIVE: To assess if adding perfusion information from dynamic contrast-enhanced (DCE MRI) acquisition schemes with high spatiotemporal resolution to T2w/DWI sequences as input features for a gradient boosting machine (GBM) machine learning (ML) c...

Hierarchical Analysis of Factors Associated with T Staging of Gastric Cancer by Endoscopic Ultrasound.

Digestive diseases and sciences
BACKGROUND: Size, ulcer, differentiation, and location are known to be factors affecting the T stage accuracy of EUS in gastric cancer. However, whether an interaction exists among recognized variables is poorly understood. The aim of this study was ...

Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning.

Scientific reports
Non-small cell lung cancer (NSCLC) is one of the most common lung cancers worldwide. Accurate prognostic stratification of NSCLC can become an important clinical reference when designing therapeutic strategies for cancer patients. With this clinical ...

Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer.

Nature communications
Accurate identification of axillary lymph node (ALN) involvement in patients with early-stage breast cancer is important for determining appropriate axillary treatment options and therefore avoiding unnecessary axillary surgery and complications. Her...