PURPOSE: To assess the rate of retinal vascularization derived from ultra-widefield (UWF) imaging-based retinopathy of prematurity (ROP) screening as predictor of type 1 ROP and characterize the effect of anti-vascular endothelial growth factor (anti...
PURPOSE: To assess the utility of dual-type deep learning (DL)-based image reconstruction with DL-based image denoising and super-resolution processing by comparing images reconstructed with the conventional method in head and neck fat-suppressed (Fs...
PURPOSE: To assess the added value of artificial intelligence (AI) for radiologists and emergency physicians in the radiographic detection of pelvic fractures.
BACKGROUND: To evaluate the effectiveness of machine learning (ML) techniques in predicting negative remodeling in uncomplicated Stanford type B intramural hematoma (IMHB) during the acute phase.
BACKGROUND: Unplanned readmissions increase unnecessary health care costs and reduce the quality of care. It is essential to plan the discharge care from the beginning of hospitalization to reduce the risk of readmission. Machine learning-based readm...
Hepatocellular carcinoma (HCC) recurrence after liver transplantation (LT) is a major contributor to mortality. We developed a recurrence prediction system for HCC patients before and after LT. Data from patients with HCC who underwent LT were retros...
BACKGROUND: The incidence of delirium in patients with burns receiving treatment in the intensive care unit (ICU) is high, reaching up to 77%, and has been associated with increased mortality rates. Therefore, early identification of patients at high...
PURPOSE: To comprehensively analyze the association between preoperative maximum standardized uptake value (SUV) on 18F-fluorodeoxyglucose positron emission tomography-computed tomography and postoperative recurrence in resected non-small cell lung c...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.