AIMC Topic: Transcriptome

Clear Filters Showing 51 to 60 of 849 articles

Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic cardiomyopathy.

Scientific reports
This study looked at possible targets for hypertrophic cardiomyopathy (HCM), a condition marked by thickening of the ventricular wall, primarily in the left ventricle. We employed differential gene analysis and weighted gene co-expression network ana...

Identification and Validation of Glycosylation‑Related Genes in Ischemic Stroke Based on Bioinformatics and Machine Learning.

Journal of molecular neuroscience : MN
Ischemic stroke (IS) constitutes a severe neurological disorder with restricted treatment alternatives. Recent investigations have disclosed that glycosylation is closely associated with the occurrence and outcome of IS. Nevertheless, data on the tra...

Exploring hypoxia driven subtypes of pulmonary arterial hypertension through transcriptomics single cell sequencing and machine learning.

Scientific reports
Pulmonary arterial hypertension (PAH) is a progressive cardiovascular disease characterized by elevated pulmonary arterial pressure, leading to right heart failure and death. Despite advancements in diagnosis and treatment, it remains incurable, and ...

Leveraging TME features and multi-omics data with an advanced deep learning framework for improved Cancer survival prediction.

Scientific reports
Glioma, a malignant intracranial tumor with high invasiveness and heterogeneity, significantly impacts patient survival. This study integrates multi-omics data to improve prognostic prediction and identify therapeutic targets. Using single-cell data ...

Identification of pivotal genes and regulatory networks associated with SAH based on multi-omics analysis and machine learning.

Scientific reports
Subarachnoid hemorrhage (SAH) is a disease with high mortality and morbidity, and its pathophysiology is complex but poorly understood. To investigate the potential therapeutic targets post-SAH, the SAH-related feature genes were screened by the comb...

Integrating machine learning and neural networks for new diagnostic approaches to idiopathic pulmonary fibrosis and immune infiltration research.

PloS one
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease with a fatal outcome, known for its rapid progression and unpredictable clinical course. However, the tools available for diagnosing and treating IPF are quite limited. T...

The inconsistent pathogenesis of endometriosis and adenomyosis: insights from endometrial metabolome and microbiome.

mSystems
UNLABELLED: Endometriosis (EM) and adenomyosis (AM) are interrelated gynecological disorders characterized by the aberrant presence of endometrial tissue and are frequently linked with chronic pelvic pain and infertility, yet their pathogenetic mecha...

Deconvolution of cell types and states in spatial multiomics utilizing TACIT.

Nature communications
Identifying cell types and states remains a time-consuming, error-prone challenge for spatial biology. While deep learning increasingly plays a role, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in...