AIMC Topic: Tumor Microenvironment

Clear Filters Showing 101 to 110 of 339 articles

Development of a web-based tool for estimating individualized survival curves in glioblastoma using clinical, mRNA, and tumor microenvironment features with fusion techniques.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
OBJECTIVE: Glioblastoma (GBM), one of the most common brain tumors, is known for its low survival rates and poor treatment responses. This study aims to create a robust predictive model that integrates multiple feature types, including clinical data,...

Transcriptional regulation of hypoxic cancer cell metabolism and artificial intelligence.

Trends in cancer
Gene expression regulation in hypoxic tumor microenvironments is mediated by O responsive transcription factors (OR-TFs), fine-tuning cancer cell metabolic demand for O according to its availability. Here, we discuss key OR-TFs and emerging artificia...

Deep learning analysis of histopathological images predicts immunotherapy prognosis and reveals tumour microenvironment features in non-small cell lung cancer.

British journal of cancer
BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer mortality worldwide. Immune checkpoint inhibitors (ICIs) have emerged as a crucial treatment option for patients with advanced NSCLC. However, only a subset of pati...

Integration of transcriptomics and machine learning for insights into breast cancer: exploring lipid metabolism and immune interactions.

Frontiers in immunology
BACKGROUND: Breast cancer (BRCA) represents a substantial global health challenge marked by inadequate early detection rates. The complex interplay between the tumor immune microenvironment and fatty acid metabolism in BRCA requires further investiga...

Machine learning-based new classification for immune infiltration of gliomas.

PloS one
BACKGROUND: Glioma is a highly heterogeneous and poorly immunogenic malignant tumor, with limited efficacy of immunotherapy. The characteristics of the immunosuppressive tumor microenvironment (TME) are one of the important factors hindering the effe...

Machine learning identification of NK cell immune characteristics in hepatocellular carcinoma based on single-cell sequencing and bulk RNA sequencing.

Genes & genomics
BACKGROUND: Hepatocellular carcinoma (HCC) is a highly malignant tumor; however, its immune microenvironment and mechanisms remain elusive. Single-cell sequencing allows for the exploration of immune characteristics within tumor at the cellular level...

Integrative multi-omic and machine learning approach for prognostic stratification and therapeutic targeting in lung squamous cell carcinoma.

BioFactors (Oxford, England)
The proliferation, metastasis, and drug resistance of cancer cells pose significant challenges to the treatment of lung squamous cell carcinoma (LUSC). However, there is a lack of optimal predictive models that can accurately forecast patient prognos...

Multi-omics features of immunogenic cell death in gastric cancer identified by combining single-cell sequencing analysis and machine learning.

Scientific reports
Gastric cancer (GC) is a prevalent malignancy with high mortality rates. Immunogenic cell death (ICD) is a unique form of programmed cell death that is closely linked to antitumor immunity and plays a critical role in modulating the tumor microenviro...