AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biomarkers, Tumor

Showing 401 to 410 of 981 articles

Clear Filters

Decoding temporal heterogeneity in NSCLC through machine learning and prognostic model construction.

World journal of surgical oncology
BACKGROUND: Non-small cell lung cancer (NSCLC) is a prevalent and heterogeneous disease with significant genomic variations between the early and advanced stages. The identification of key genes and pathways driving NSCLC tumor progression is critica...

Artificial Intelligence in Colorectal Cancer: From Patient Screening over Tailoring Treatment Decisions to Identification of Novel Biomarkers.

Digestion
BACKGROUND: Artificial intelligence (AI) is increasingly entering and transforming not only medical research but also clinical practice. In the last 10 years, new AI methods have enabled computers to perform visual tasks, reaching high performance an...

Identification of novel biomarkers to distinguish clear cell and non-clear cell renal cell carcinoma using bioinformatics and machine learning.

PloS one
Renal cell carcinoma (RCC), accounting for 90% of all kidney cancer, is categorized into clear cell RCC (ccRCC) and non-clear cell RCC (non-ccRCC) for treatment based on the current NCCN Guidelines. Thus, the classification will be associated with th...

Revolutionizing breast cancer Ki-67 diagnosis: ultrasound radiomics and fully connected neural networks (FCNN) combination method.

Breast cancer research and treatment
PURPOSE: This study aims to assess the diagnostic value of ultrasound habitat sub-region radiomics feature parameters using a fully connected neural networks (FCNN) combination method L2,1-norm in relation to breast cancer Ki-67 status.

Developing a prognostic model using machine learning for disulfidptosis related lncRNA in lung adenocarcinoma.

Scientific reports
Disulfidptosis represents a novel cell death mechanism triggered by disulfide stress, with potential implications for advancements in cancer treatments. Although emerging evidence highlights the critical regulatory roles of long non-coding RNAs (lncR...

Identification of Multiclass Pediatric Low-Grade Neuroepithelial Tumor Molecular Subtype with ADC MR Imaging and Machine Learning.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: Molecular biomarker identification increasingly influences the treatment planning of pediatric low-grade neuroepithelial tumors (PLGNTs). We aimed to develop and validate a radiomics-based ADC signature predictive of the molec...

Multispectral 3D DNA Machine Combined with Multimodal Machine Learning for Noninvasive Precise Diagnosis of Bladder Cancer.

Analytical chemistry
Extracellular vesicle (EV) molecular phenotyping offers enormous opportunities for cancer diagnostics. However, the majority of the associated studies adopted biomarker-based unimodal analysis to achieve cancer diagnosis, which has high false positiv...

MicroRNAs: circulating biomarkers for the early detection of imperceptible cancers via biosensor and machine-learning advances.

Oncogene
This review explores the topic of microRNAs (miRNAs) for improved early detection of imperceptible cancers, with potential to advance precision medicine and improve patient outcomes. Historical research exploring miRNA's role in cancer detection coll...

Deep learning-based pathway-centric approach to characterize recurrent hepatocellular carcinoma after liver transplantation.

Human genomics
BACKGROUND: Liver transplantation (LT) is offered as a cure for Hepatocellular carcinoma (HCC), however 15-20% develop recurrence post-transplant which tends to be aggressive. In this study, we examined the transcriptome profiles of patients with rec...

Machine learning survival prediction using tumor lipid metabolism genes for osteosarcoma.

Scientific reports
Osteosarcoma is a primary malignant tumor that commonly affects children and adolescents, with a poor prognosis. The existence of tumor heterogeneity leads to different molecular subtypes and survival outcomes. Recently, lipid metabolism has been ide...