AI Medical Compendium Topic:
Biomarkers, Tumor

Clear Filters Showing 621 to 630 of 985 articles

Application of machine learning in the diagnosis of gastric cancer based on noninvasive characteristics.

PloS one
BACKGROUND: The diagnosis of gastric cancer mainly relies on endoscopy, which is invasive and costly. The aim of this study is to develop a predictive model for the diagnosis of gastric cancer based on noninvasive characteristics.

Network-based drug sensitivity prediction.

BMC medical genomics
BACKGROUND: Drug sensitivity prediction and drug responsive biomarker selection on high-throughput genomic data is a critical step in drug discovery. Many computational methods have been developed to serve this purpose including several deep neural n...

Noninvasive Precision Screening of Prostate Cancer by Urinary Multimarker Sensor and Artificial Intelligence Analysis.

ACS nano
Screening for prostate cancer relies on the serum prostate-specific antigen test, which provides a high rate of false positives (80%). This results in a large number of unnecessary biopsies and subsequent overtreatment. Considering the frequency of t...

Immune profile of the tumor microenvironment and the identification of a four-gene signature for lung adenocarcinoma.

Aging
The composition and relative abundances of immune cells in the tumor microenvironment are key factors affecting the progression of lung adenocarcinomas (LUADs) and the efficacy of immunotherapy. Using the cancer gene expression dataset from The Cance...

miRNA-Based Feature Classifier Is Associated with Tumor Mutational Burden in Head and Neck Squamous Cell Carcinoma.

BioMed research international
Tumor mutation burden (TMB) is considered to be an independent genetic biomarker that can predict the tumor patient's response to immune checkpoint inhibitors (ICIs). Meanwhile, microRNA (miRNA) plays a key role in regulating the anticancer immune re...

Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers.

Gut
Artificial intelligence (AI) can extract complex information from visual data. Histopathology images of gastrointestinal (GI) and liver cancer contain a very high amount of information which human observers can only partially make sense of. Complemen...

Deep learning in cancer pathology: a new generation of clinical biomarkers.

British journal of cancer
Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers. However, the growing number of these complex biomarkers tends to increase the cost and time for decision-making in routine daily oncology practice; furthermore, bi...

Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients.

Nature communications
Cancer patient classification using predictive biomarkers for anti-cancer drug responses is essential for improving therapeutic outcomes. However, current machine-learning-based predictions of drug response often fail to identify robust translational...

Development and Validation of a Gene Signature Classifier for Consensus Molecular Subtyping of Colorectal Carcinoma in a CLIA-Certified Setting.

Clinical cancer research : an official journal of the American Association for Cancer Research
PURPOSE: Consensus molecular subtyping (CMS) of colorectal cancer has potential to reshape the colorectal cancer landscape. We developed and validated an assay that is applicable on formalin-fixed, paraffin-embedded (FFPE) samples of colorectal cance...