AIMC Topic: Cell Line, Tumor

Clear Filters Showing 121 to 130 of 507 articles

Machine learning assisted dual-modal SERS detection for circulating tumor cells.

Biosensors & bioelectronics
Detecting circulating tumor cells (CTCs) from blood has become a promising approach for cancer diagnosis. Surface-enhanced Raman Spectroscopy (SERS) has rapidly developed as a significant detection technology for CTCs, offering high sensitivity and s...

A Machine Learning-Optimized System for Pulsatile, Photo- and Chemotherapeutic Treatment Using Near-Infrared Responsive MoS-Based Microparticles in a Breast Cancer Model.

ACS nano
Multimodal cancer therapies are often required for progressive cancers due to the high persistence and mortality of the disease and the negative systemic side effects of traditional therapeutic methods. Thus, the development of less invasive modaliti...

Machine learning identification of NK cell immune characteristics in hepatocellular carcinoma based on single-cell sequencing and bulk RNA sequencing.

Genes & genomics
BACKGROUND: Hepatocellular carcinoma (HCC) is a highly malignant tumor; however, its immune microenvironment and mechanisms remain elusive. Single-cell sequencing allows for the exploration of immune characteristics within tumor at the cellular level...

Advancing Anticancer Drug Discovery: Leveraging Metabolomics and Machine Learning for Mode of Action Prediction by Pattern Recognition.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
A bottleneck in the development of new anti-cancer drugs is the recognition of their mode of action (MoA). Metabolomics combined with machine learning allowed to predict MoAs of novel anti-proliferative drug candidates, focusing on human prostate can...

Enhanced cancer classification and critical feature visualization using Raman spectroscopy and convolutional neural networks.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Cell misuse and cross-contamination pose a significant threat to the accuracy of cell research outcomes, often leading to the wasteful expenditure of time, manpower, and material resources. Consequently, the accurate identification of cell lines is p...

Wee1 inhibitor optimization through deep-learning-driven decision making.

European journal of medicinal chemistry
Deep learning has gained increasing attention in recent years, yielding promising results in hit screening and molecular optimization. Herein, we employed an efficient strategy based on multiple deep learning techniques to optimize Wee1 inhibitors, w...

Machine learning-based discovery of UPP1 as a key oncogene in tumorigenesis and immune escape in gliomas.

Frontiers in immunology
INTRODUCTION: Gliomas are the most common and aggressive type of primary brain tumor, with a poor prognosis despite current treatment approaches. Understanding the molecular mechanisms underlying glioma development and progression is critical for imp...