AIMC Topic:
Image Interpretation, Computer-Assisted

Clear Filters Showing 1481 to 1490 of 2721 articles

Artificial intelligence in abdominal aortic aneurysm.

Journal of vascular surgery
OBJECTIVE: Abdominal aortic aneurysm (AAA) is a life-threatening disease, and the only curative treatment relies on open or endovascular repair. The decision to treat relies on the evaluation of the risk of AAA growth and rupture, which can be diffic...

Machine Learning Analysis of Image Data Based on Detailed MR Image Reports for Nasopharyngeal Carcinoma Prognosis.

BioMed research international
We aimed to assess the use of automatic machine learning (AutoML) algorithm based on magnetic resonance (MR) image data to assign prediction scores to patients with nasopharyngeal carcinoma (NPC). We also aimed to develop a 4-group classification sys...

Automatic Recognition of Laryngoscopic Images Using a Deep-Learning Technique.

The Laryngoscope
OBJECTIVES/HYPOTHESIS: To develop a deep-learning-based computer-aided diagnosis system for distinguishing laryngeal neoplasms (benign, precancerous lesions, and cancer) and improve the clinician-based accuracy of diagnostic assessments of laryngosco...

Radiogenomic Models Using Machine Learning Techniques to Predict EGFR Mutations in Non-Small Cell Lung Cancer.

Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
BACKGROUND: The purpose of this study was to build radiogenomics models from texture signatures derived from computed tomography (CT) and F-FDG PET-CT (FDG PET-CT) images of non-small cell lung cancer (NSCLC) with and without epidermal growth factor ...

An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy.

Scientific reports
We present a comprehensive analysis of the submissions to the first edition of the Endoscopy Artefact Detection challenge (EAD). Using crowd-sourcing, this initiative is a step towards understanding the limitations of existing state-of-the-art comput...

Predicting individual clinical trajectories of depression with generative embedding.

NeuroImage. Clinical
Patients with major depressive disorder (MDD) show heterogeneous treatment response and highly variable clinical trajectories: while some patients experience swift recovery, others show relapsing-remitting or chronic courses. Predicting individual cl...

Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Diabetic retinopathy (DR), which is generally diagnosed by the presence of hemorrhages and hard exudates, is one of the most prevalent causes of visual impairment and blindness. Early detection of hard exudates (HEs) in colo...

An End-to-End Multi-Task Deep Learning Framework for Skin Lesion Analysis.

IEEE journal of biomedical and health informatics
Automatic skin lesion analysis of dermoscopy images remains a challenging topic. In this paper, we propose an end-to-end multi-task deep learning framework for automatic skin lesion analysis. The proposed framework can perform skin lesion detection, ...

A machine learning model to precisely immunohistochemically classify pituitary adenoma subtypes with radiomics based on preoperative magnetic resonance imaging.

European journal of radiology
PURPOSE: The type of pituitary adenoma (PA) cannot be clearly recognized with preoperative magnetic resonance imaging (MRI) but can be classified with immunohistochemical staining after surgery. In this study, a model to precisely immunohistochemical...