AI Medical Compendium Topic:
Middle Aged

Clear Filters Showing 861 to 870 of 14035 articles

Which approach better predicts diabetes: Traditional econometric methods or machine learning? Evidence from a cross-sectional study in South Korea.

Computers in biology and medicine
To prevent chronic disease from getting worse, it is important to detect and predict it at an early stage. Therefore, the accuracy of the prediction is particularly important. To investigate the accuracy of different methods, this study compares the ...

AI Efficiency in Dentistry: Comparing Artificial Intelligence Systems with Human Practitioners in Assessing Several Periodontal Parameters.

Medicina (Kaunas, Lithuania)
Artificial intelligence (AI) is increasingly used in healthcare, including dental and periodontal diagnostics, due to its ability to analyze complex datasets with speed and precision. This study aimed to evaluate the reliability of AI-assisted denta...

Development and validation of a machine learning prognostic model based on an epigenomic signature in patients with pancreatic ductal adenocarcinoma.

International journal of medical informatics
BACKGROUND: In Pancreatic Ductal Adenocarcinoma (PDAC), current prognostic scores are unable to fully capture the biological heterogeneity of the disease. While some approaches investigating the role of multi-omics in PDAC are emerging, the analysis ...

Development and validation of explainable machine learning models for female hip osteoporosis using electronic health records.

International journal of medical informatics
BACKGROUND: Hip fractures are associated with reduced mobility, and higher morbidity, mortality, and healthcare costs. Approximately 90% of hip fractures in the elderly are associated with osteoporosis, making it particularly important to screen the ...

A longitudinal observational study with ecological momentary assessment and deep learning to predict non-prescribed opioid use, treatment retention, and medication nonadherence among persons receiving medication treatment for opioid use disorder.

Journal of substance use and addiction treatment
BACKGROUND: Despite effective treatments for opioid use disorder (OUD), relapse and treatment drop-out diminish their efficacy, increasing the risks of adverse outcomes, including death. Predicting important outcomes, including non-prescribed opioid ...

Evaluating the prognostic significance of artificial intelligence-delineated gross tumor volume and prostate volume measurements for prostate radiotherapy.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Artificial intelligence (AI) may extract prognostic information from MRI for localized prostate cancer. We evaluate whether AI-derived prostate and gross tumor volume (GTV) are associated with toxicity and oncologic outcomes a...

An interpretable deep-learning approach to detect biomarkers in anxious-depressed symptoms from prefrontal fNIRS signals during an autobiographical memory test.

Asian journal of psychiatry
BACKGROUND: Individuals with anxious-depressed (AD) symptoms have more severe mood disorders and cognitive impairment than those with non-anxious depression (NAD) symptoms. Therefore, it is important to clarify the underlying neurophysiology of these...

Deep learning informed multimodal fusion of radiology and pathology to predict outcomes in HPV-associated oropharyngeal squamous cell carcinoma.

EBioMedicine
BACKGROUND: We aim to predict outcomes of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC), a subtype of head and neck cancer characterized with improved clinical outcome and better response to therapy. Pathology an...