AIMC Topic: Neoplasm Invasiveness

Clear Filters Showing 21 to 30 of 198 articles

GALR1 and PENK serve as potential biomarkers in invasive non-functional pituitary neuroendocrine tumours.

Gene
BACKGROUND: Some nonfunctioning pituitary neuroendocrine tumor (NFPitNET) can show invasive growth, which increases the difficulty of surgery and indicates a poor prognosis. However, the molecular mechanism related to invasiveness remains to be furth...

Preoperative diagnosis of meningioma sinus invasion based on MRI radiomics and deep learning: a multicenter study.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: Exploring the construction of a fusion model that combines radiomics and deep learning (DL) features is of great significance for the precise preoperative diagnosis of meningioma sinus invasion.

Machine learning model based on preoperative contrast-enhanced CT and clinical features to predict perineural invasion in gallbladder carcinoma patients.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
BACKGROUND: Perineural invasion (PNI) is an independent prognostic risk factor for gallbladder carcinoma (GBC). However, there is currently no reliable method for the preoperative noninvasive prediction of PNI.

Radiomics integration based on intratumoral and peritumoral computed tomography improves the diagnostic efficiency of invasiveness in patients with pure ground-glass nodules: a machine learning, cross-sectional, bicentric study.

Journal of cardiothoracic surgery
BACKGROUND: Radiomics has shown promise in the diagnosis and prognosis of lung cancer. Here, we investigated the performance of computed tomography-based radiomic features, extracted from gross tumor volume (GTV), peritumoral volume (PTV), and GTV + ...

Identifying invasiveness to aid lung adenocarcinoma diagnosis using deep learning and pathomics.

Scientific reports
Most classification efforts for primary subtypes of lung adenocarcinoma (LUAD) have not yet been integrated into clinical practice. This study explores the feasibility of combining deep learning and pathomics to identify tumor invasiveness in LUAD pa...

A Deep Reinforcement Learning-Based Feature Selection Method for Invasive Disease Event Prediction Using Imbalanced Follow-Up Data.

IEEE journal of biomedical and health informatics
The machine learning-based model is a promising paradigm for predicting invasive disease events (iDEs) in breast cancer. Feature selection (FS) is an essential preprocessing technique employed to identify the pertinent features for the prediction mod...

Deep learning and radiomics for gastric cancer serosal invasion: automated segmentation and multi-machine learning from two centers.

Journal of cancer research and clinical oncology
OBJECTIVE: The objective of this study is to develop an automated method for segmenting spleen computed tomography (CT) images using a deep learning model. This approach is intended to address the limitations of manual segmentation, which is known to...