AIMC Topic: Phenotype

Clear Filters Showing 841 to 850 of 922 articles

Epistasis Detection Based on Epi-GTBN.

Methods in molecular biology (Clifton, N.J.)
Epistasis detection is a hot topic in bioinformatics due to its relevance to the detection of specific phenotypic traits and gene-gene interactions. Here, we present a step-by-step protocol to apply Epi-GTBN, a machine learning-based method based on ...

Protocol for Epistasis Detection with Machine Learning Using GenEpi Package.

Methods in molecular biology (Clifton, N.J.)
To develop medical treatments and prevention, the association between disease and genetic variants needs to be identified. The main goal of genome-wide association study (GWAS) is to discover the underlying reason for vulnerability to disease and uti...

Brief Survey on Machine Learning in Epistasis.

Methods in molecular biology (Clifton, N.J.)
In biology, the term "epistasis" indicates the effect of the interaction of a gene with another gene. A gene can interact with an independently sorted gene, located far away on the chromosome or on an entirely different chromosome, and this interacti...

Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study.

The Lancet. Oncology
BACKGROUND: Detecting microsatellite instability (MSI) in colorectal cancer is crucial for clinical decision making, as it identifies patients with differential treatment response and prognosis. Universal MSI testing is recommended, but many patients...

PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records.

Journal of the American Medical Informatics Association : JAMIA
OBJECTIVE: Developing algorithms to extract phenotypes from electronic health records (EHRs) can be challenging and time-consuming. We developed PheMap, a high-throughput phenotyping approach that leverages multiple independent, online resources to s...

Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease.

Cardiovascular research
Rapid technological advances in non-invasive imaging, coupled with the availability of large data sets and the expansion of computational models and power, have revolutionized the role of imaging in medicine. Non-invasive imaging is the pillar of mod...

Comparison of data analytics strategies in computer vision systems to predict pig body composition traits from 3D images.

Journal of animal science
Computer vision systems (CVS) have been shown to be a powerful tool for the measurement of live pig body weight (BW) with no animal stress. With advances in precision farming, it is now possible to evaluate the growth performance of individual pigs m...

Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods.

Journal of animal science
The aim of this study was to compare the predictive performance of the Genomic Best Linear Unbiased Predictor (GBLUP) and machine learning methods (Random Forest, RF; Support Vector Machine, SVM; Artificial Neural Network, ANN) in simulated populatio...

Multi-dimensional machine learning approaches for fruit shape phenotyping in strawberry.

GigaScience
BACKGROUND: Shape is a critical element of the visual appeal of strawberry fruit and is influenced by both genetic and non-genetic determinants. Current fruit phenotyping approaches for external characteristics in strawberry often rely on the human e...