Prediction of outcomes following a prenatal diagnosis of congenital heart disease (CHD) is challenging. Machine learning (ML) algorithms may be used to reduce clinical uncertainty and improve prognostic accuracy. We performed a pilot study to train M...
Journal of gastroenterology and hepatology
May 9, 2024
BACKGROUND AND AIM: In this study, a deep learning algorithm was used to predict the survival rate of colon cancer (CC) patients, and compared its performance with traditional Cox regression.
European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
May 9, 2024
INTRODUCTION: Distal Cholangiocarcinoma (dCCA) represents a challenge in hepatobiliary oncology, that requires nuanced post-resection prognostic modeling. Conventional staging criteria may oversimplify dCCA complexities, prompting the exploration of ...
BACKGROUND: Sepsis is a severe form of systemic inflammatory response syndrome that is caused by infection. Sepsis is characterized by a marked state of stress, which manifests as nonspecific physiological and metabolic changes in response to the dis...
Expert review of molecular diagnostics
May 9, 2024
INTRODUCTION: Histological images contain phenotypic information predictive of patient outcomes. Due to the heavy workload of pathologists, the time-consuming nature of quantitatively assessing histological features, and human eye limitations to reco...
Immunotherapy is becoming increasingly important, but the overall response rate is relatively low in the treatment of gastric cancer (GC). The application of tumor mutational burden (TMB) in predicting immunotherapy efficacy in GC patients is limited...
Cancer immunology, immunotherapy : CII
May 7, 2024
Major histocompatibility complex (MHC) could serve as a potential biomarker for tumor immunotherapy, however, it is not yet known whether MHC could distinguish potential beneficiaries. Single-cell RNA sequencing datasets derived from patients with im...
Patients with moderate aortic stenosis (AS) have a greater risk of adverse clinical outcomes than that of the general population. How this risk compares with those with severe AS, along with factors associated with outcomes and disease progression, i...
INTRODUCTION: Well-calibrated models for personalized prognostication of patients with gastrointestinal neuroendocrine neoplasms (GINENs) are limited. This study aimed to develop and validate a machine-learning model to predict the survival of patien...
OBJECTIVE: To investigate the prognostic value of F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma...