BACKGROUND: Automatic segmentation of thymic lesions in preoperative computed tomography (CT) images is crucial for accurate diagnosis but remains time-consuming. Although UNet is widely used in medical imaging, its performance is limited by the inhe...
PURPOSE: The goal of this study is to create a novel framework for identifying MSI status in colorectal cancer using advanced radiomics and deep learning strategies, aiming to enhance clinical decision-making and improve patient outcomes in oncology.
Journal of cancer research and clinical oncology
Feb 20, 2025
PURPOSE: The International Federation of Gynecology and Obstetric (FIGO) stage is critical to guiding the treatments of ovarian cancer (OC). We tried to develop a model to predict the FIGO stage of OC through machine learning algorithms with patients...
PURPOSE: Primary barriers to application of immune checkpoint inhibitor (ICI) therapy for cancer include severe side effects (such as potentially life threatening pneumonitis [PN]), which can cause the discontinuation of treatment. Predicting which p...
OBJECTIVE: This study aimed to evaluate the predictive value of implementing machine learning models based on ultrasound radiomics and clinicopathological features in the survival analysis of triple-negative breast cancer (TNBC) patients.
Cervical spinal cord injury is often catastrophic, frequently leading to irreversible impairment. MRI has become the gold standard for evaluating spinal cord injuries (SCI). Our study aimed to assess the accuracy of a radiomics approach, based on mac...
Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
Feb 15, 2025
OBJECTIVE: To develop, test, and externally validate a hybrid artificial intelligence (AI) model based on hand-crafted and deep radiomics features extracted from B-mode ultrasound images in differentiating benign and malignant thyroid nodules compare...
BACKGROUND: Radiomics analysis extracts high-dimensional features from medical images, which are used to predict outcomes in machine learning (ML). Recently, deep-learning methods have become applicable to image data converted from nonimage samples.
Journal of cancer research and clinical oncology
Feb 14, 2025
PURPOSE: Hepatocellular carcinoma (HCC) remains a global health concern, marked by increasing incidence rates and poor outcomes. This study seeks to develop a robust predictive model by integrating radiomics and deep learning features with clinical d...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.