AIM: To develop a positron emission tomography/computed tomography (PET/CT)-based radiomics model for predicting programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients and estimating progression-free survival...
RATIONALE AND OBJECTIVES: To construct and validate an interpretable machine learning (ML) radiomics model derived from multiparametric magnetic resonance imaging (MRI) images to differentiate between luminal and non-luminal breast cancer (BC) subtyp...
BACKGROUND: Lung adenocarcinoma (LAC) comprises a substantial subset of non-small cell lung cancer (NSCLC) diagnoses, where epidermal growth factor receptor (EGFR) mutations play a pivotal role as indicators for therapeutic intervention with targeted...
BACKGROUND: Variations in medical images specific to individual scanners restrict the use of radiomics in both clinical practice and research. To create reproducible and generalizable radiomics-based models for outcome prediction and assessment, data...
BACKGROUND: High-grade gliomas are among the most aggressive and deadly brain tumors, highlighting the critical need for improved prognostic markers and predictive models. Recent studies have identified the expression of IL7R as a significant risk fa...
BACKGROUND: Microvascular invasion (MVI) is an important risk factor for early postoperative recurrence of hepatocellular carcinoma (HCC). Based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance ...
RATIONALE AND OBJECTIVES: Coronary chronic total occlusion (CTO) and subtotal occlusion (STO) pose diagnostic challenges, differing in treatment strategies. Artificial intelligence and radiomics are promising tools for accurate discrimination. This s...
BACKGROUND AND PURPOSE: Radiomics analysis has emerged as a promising approach to aid in cancer diagnosis and treatment. However, radiomics research currently lacks standardization, and radiomics features can be highly dependent on acquisition and pr...
OBJECTIVE: This study aimed to develop and validate a nomogram combining F-FDG PET radiomics and clinical factors to non-invasively predict bone marrow involvement (BMI) in patients with lymphoma.
BACKGROUND: Distinguishing between benign and malignant testicular lesions on clinical magnetic resonance imaging (MRI) is crucial for guiding treatment planning. However, conventional MRI-based radiomics to identify testicular cancer requires expert...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.