BACKGROUND: To design a pulmonary ground-glass nodules (GGN) classification method based on computed tomography (CT) radiomics and machine learning for prediction of invasion in early-stage ground-glass opacity (GGO) pulmonary adenocarcinoma.
BACKGROUND: New machine learning methods and techniques are frequently introduced in radiomics, but they are often tested on a single dataset, which makes it challenging to assess their true benefit. Currently, there is a lack of a larger, publicly a...
. Approximately 57% of non-small cell lung cancer (NSCLC) patients face a 20% risk of brain metastases (BMs). The delivery of drugs to the central nervous system is challenging because of the blood-brain barrier, leading to a relatively poor prognosi...
RATIONALE AND OBJECTIVES: Isocitrate dehydrogenase 1 (IDH1) is a potential therapeutic target across various tumor types. Here, we aimed to devise a radiomic model capable of predicting the IDH1 expression levels in patients with head and neck squamo...
RATIONALE AND OBJECTIVES: Current radiomics research primarily focuses on intratumoral regions and fixed peritumoral areas, lacking optimization for accurate Ki-67 prediction. This study aimed to develop machine learning (ML) models to analyze radiom...
Soft tissue sarcomas (STS) are a heterogeneous group of rare malignant tumors. Tumor grade might be underestimated in biopsy due to intratumoral heterogeneity. This mini-review aims to present the current state of predicting malignancy grades of STS ...
OBJECTIVES: To develop and identify machine learning (ML) models using pretreatment 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-based radiomic features to differentiate benign from malignant parotid gland diseases (PGDs...
Antimicrobial resistance (AMR) presents a significant threat to global healthcare. Proteus mirabilis causes catheter-associated urinary tract infections (CAUTIs) and exhibits increased antibiotic resistance. Traditional diagnostics still rely on cult...
We investigate the predictive value of a comprehensive model based on preoperative ultrasound radiomics, deep learning, and clinical features for pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) for the breast cancer. We enro...
AJNR. American journal of neuroradiology
Sep 9, 2024
BACKGROUND AND PURPOSE: Delayed cerebral ischemia is hard to diagnose early due to gradual, symptomless development. This study aimed to develop an automated model for predicting delayed cerebral ischemia following aneurysmal SAH on NCCT.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.