AIMC Topic: Risk Factors

Clear Filters Showing 11 to 20 of 2486 articles

Construction and validation of a risk prediction model for chronic obstructive pulmonary disease (COPD): a cross-sectional study based on the NHANES database from 2009 to 2018.

BMC pulmonary medicine
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a major global public health concern, and early screening and identification of high-risk populations are critical for reducing the disease burden. Although several studies have explored the...

Predicting carotid atherosclerosis in latent autoimmune diabetes in adult patients using machine learning models: a retrospective study.

BMC cardiovascular disorders
BACKGROUND: Latent autoimmune diabetes in adults (LADA) is a slowly progressing form of diabetes with autoimmune origins. Patients with LADA are at an elevated risk of developing cardiovascular diseases, including carotid atherosclerosis. While machi...

Machine learning algorithms for prediction of cerebrospinal fluid leakage after posterior surgery for thoracic ossification of the ligamentum flavum.

Scientific reports
To develop and validate a machine-learning (ML) model that pre-operatively predicts cerebrospinal-fluid leakage (CSFL) after posterior decompression for thoracic ossification of the ligamentum flavum (TOLF), and to elucidate the key risk factors driv...

Development and validation of a risk prediction model for depression in patients with chronic obstructive pulmonary disease.

BMC psychiatry
BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is a prevalent respiratory condition often accompanied by depression, which exacerbates disease burden and impairs quality of life. Early identification of depression risk in COPD patients rema...

Key factors in predictive analysis of cardiovascular risks in public health.

Scientific reports
This research emphasizes the role of analytics in evaluating the risk of disease (CVD) focusing on thorough data preparation and feature engineering for accurate predictions. We studied machine learning (ML) and learning (DL) models, such as Logistic...

Assessment of drug induced hyperuricemia and gout risk using the FDA adverse event reporting system.

Scientific reports
Hyperuricemia, the key pathological basis of gout, is increasingly prevalent worldwide. While lifestyle factors contribute, various medications also play a role. However, their specific risks and mechanisms remain inadequately studied. Disproportiona...

Exploring the link between the ZJU index and sarcopenia in adults aged 20-59 using NHANES and machine learning.

Scientific reports
Sarcopenia, characterized by progressive loss of muscle mass and function, is a growing public health concern. The ZJU index, a novel metabolic marker, integrates lipid metabolism and glucose regulation parameters. While its association with metaboli...

Machine learning-based prediction model for arteriovenous fistula thrombosis risk: a retrospective cohort study from 2017 to 2024.

BMC nephrology
BACKGROUND: Thrombosis of arteriovenous fistulas represents a prevalent complication among patients undergoing hemodialysis, characterized by a notably high incidence rate. Presently, there is an absence of robust assessment tools capable of predicti...

Development and validation of a machine learning model for central compartmental lymph node metastasis in solitary papillary thyroid microcarcinoma via ultrasound imaging features and clinical parameters.

BMC medical imaging
BACKGROUND: Papillary thyroid microcarcinoma (PTMC) is the most common malignant subtype of thyroid cancer. Preoperative assessment of the risk of central compartment lymph node metastasis (CCLNM) can provide scientific support for personalized treat...

AI-driven analysis by identifying risk factors of VL relapse in HIV co-infected patients.

Scientific reports
Visceral Leishmaniasis (VL), also known as Kala-Azar, poses a significant global public health challenge and is a neglected disease, with relapses and treatment failures leading to increased morbidity and mortality. This study introduces an explainab...