AIMC Topic: Transcriptome

Clear Filters Showing 481 to 490 of 899 articles

Semi-Supervised Topological Analysis for Elucidating Hidden Structures in High-Dimensional Transcriptome Datasets.

IEEE/ACM transactions on computational biology and bioinformatics
Topological data analysis (TDA) is a powerful method for reducing data dimensionality, mining underlying data relationships, and intuitively representing the data structure. The Mapper algorithm is one such tool that projects high-dimensional data to...

Discriminant Projection Shared Dictionary Learning for Classification of Tumors Using Gene Expression Data.

IEEE/ACM transactions on computational biology and bioinformatics
With a variety of tumor subtypes, personalized treatments need to identify the subtype of a tumor as accurately as possible. The development of DNA microarrays provides an opportunity to predict tumor classification. One strategy is to use gene expre...

Identification of Tissue of Origin and Guided Therapeutic Applications in Cancers of Unknown Primary Using Deep Learning and RNA Sequencing (TransCUPtomics).

The Journal of molecular diagnostics : JMD
Cancers of unknown primary (CUP) are metastatic cancers for which the primary tumor is not found despite thorough diagnostic investigations. Multiple molecular assays have been proposed to identify the tissue of origin (TOO) and inform clinical care;...

Prioritizing and characterizing functionally relevant genes across human tissues.

PLoS computational biology
Knowledge of genes that are critical to a tissue's function remains difficult to ascertain and presents a major bottleneck toward a mechanistic understanding of genotype-phenotype links. Here, we present the first machine learning model-FUGUE-combini...

Dual-Organ Transcriptomic Analysis of Rainbow Trout Infected With Through Co-Expression and Machine Learning.

Frontiers in immunology
is a major pathogen that causes a high mortality rate in trout farms. However, systemic responses to the pathogen and its interactions with multiple organs during the course of infection have not been well described. In this study, dual-organ transc...

Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer's disease.

Scientific reports
Alzheimer's disease (AD) is a neurodegenerative disorder causing 70% of dementia cases. However, the mechanism of disease development is still elusive. Despite the availability of a wide range of biological data, a comprehensive understanding of AD's...

The Immune Subtypes and Landscape of Gastric Cancer and to Predict Based on the Whole-Slide Images Using Deep Learning.

Frontiers in immunology
BACKGROUND: Gastric cancer (GC) is a highly heterogeneous tumor with different responses to immunotherapy. Identifying immune subtypes and landscape of GC could improve immunotherapeutic strategies.

Prediction of drug efficacy from transcriptional profiles with deep learning.

Nature biotechnology
Drug discovery focused on target proteins has been a successful strategy, but many diseases and biological processes lack obvious targets to enable such approaches. Here, to overcome this challenge, we describe a deep learning-based efficacy predicti...