AIMC Topic: Transcriptome

Clear Filters Showing 71 to 80 of 849 articles

Integration of graph neural networks and transcriptomics analysis identify key pathways and gene signature for immunotherapy response and prognosis of skin melanoma.

BMC cancer
OBJECTIVE: The assessment of immunotherapy plays a pivotal role in the clinical management of skin melanoma. Graph neural networks (GNNs), alongside other deep learning algorithms and bioinformatics approaches, have demonstrated substantial promise i...

Unique and shared transcriptomic signatures underlying localized scleroderma pathogenesis identified using interpretable machine learning.

JCI insight
Using transcriptomic profiling at single-cell resolution, we investigated cell-intrinsic and cell-extrinsic signatures associated with pathogenesis and inflammation-driven fibrosis in both adult and pediatric patients with localized scleroderma (LS)....

Combining multi-omics analysis with machine learning to uncover novel molecular subtypes, prognostic markers, and insights into immunotherapy for melanoma.

BMC cancer
BACKGROUND: Melanoma (SKCM) is an extremely aggressive form of cancer, characterized by high mortality rates, frequent metastasis, and limited treatment options. Our study aims to identify key target genes and enhance the diagnostic accuracy of melan...

Machine learning of clinical phenotypes facilitates autism screening and identifies novel subgroups with distinct transcriptomic profiles.

Scientific reports
Autism spectrum disorder (ASD) presents significant challenges in diagnosis and intervention due to its diverse clinical manifestations and underlying biological complexity. This study explored machine learning approaches to enhance ASD screening acc...

MIST: An interpretable and flexible deep learning framework for single-T cell transcriptome and receptor analysis.

Science advances
Joint analysis of transcriptomic and T cell receptor (TCR) features at single-cell resolution provides a powerful approach for in-depth T cell immune function research. Here, we introduce a deep learning framework for single-T cell transcriptome and ...

Mitigating ambient RNA and doublets effects on single cell transcriptomics analysis in cancer research.

Cancer letters
In cancer biology, where understanding the tumor microenvironment at high resolution is vital, ambient RNA contamination becomes a considerable problem. This hinders accurate delineation of intratumoral heterogeneity, complicates the identification o...

5-Repurposed Drug Candidates Identified in Motor Neurons and Muscle Tissues with Amyotrophic Lateral Sclerosis by Network Biology and Machine Learning Based on Gene Expression.

Neuromolecular medicine
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that leads to motor neuron degeneration, muscle weakness, and respiratory failure. Despite ongoing research, effective treatments for ALS are limited. This study aimed to...

Integrating multiple spatial transcriptomics data using community-enhanced graph contrastive learning.

PLoS computational biology
Due to the rapid development of spatial sequencing technologies, large amounts of spatial transcriptomic datasets have been generated across various technological platforms or different biological conditions (e.g., control vs. treatment). Spatial tra...

Causal machine learning for single-cell genomics.

Nature genetics
Advances in single-cell '-omics' allow unprecedented insights into the transcriptional profiles of individual cells and, when combined with large-scale perturbation screens, enable measuring of the effect of targeted perturbations on the whole transc...

Unveiling the power of Treg.Sig: a novel machine-learning derived signature for predicting ICI response in melanoma.

Frontiers in immunology
BACKGROUND: Although immune checkpoint inhibitor (ICI) represents a significant breakthrough in cancer immunotherapy, only a few patients benefit from it. Given the critical role of Treg cells in ICI treatment resistance, we explored a Treg-associate...