AIMC Topic: Aged

Clear Filters Showing 1411 to 1420 of 13247 articles

Which approach better predicts diabetes: Traditional econometric methods or machine learning? Evidence from a cross-sectional study in South Korea.

Computers in biology and medicine
To prevent chronic disease from getting worse, it is important to detect and predict it at an early stage. Therefore, the accuracy of the prediction is particularly important. To investigate the accuracy of different methods, this study compares the ...

Class balancing diversity multimodal ensemble for Alzheimer's disease diagnosis and early detection.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Alzheimer's disease (AD) poses significant global health challenges due to its increasing prevalence and associated societal costs. Early detection and diagnosis of AD are critical for delaying progression and improving patient outcomes. Traditional ...

Evaluating the prognostic significance of artificial intelligence-delineated gross tumor volume and prostate volume measurements for prostate radiotherapy.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Artificial intelligence (AI) may extract prognostic information from MRI for localized prostate cancer. We evaluate whether AI-derived prostate and gross tumor volume (GTV) are associated with toxicity and oncologic outcomes a...

Deep learning informed multimodal fusion of radiology and pathology to predict outcomes in HPV-associated oropharyngeal squamous cell carcinoma.

EBioMedicine
BACKGROUND: We aim to predict outcomes of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC), a subtype of head and neck cancer characterized with improved clinical outcome and better response to therapy. Pathology an...

Machine learning-based model for predicting all-cause mortality in severe pneumonia.

BMJ open respiratory research
BACKGROUND: Severe pneumonia has a poor prognosis and high mortality. Current severity scores such as Acute Physiology and Chronic Health Evaluation (APACHE-II) and Sequential Organ Failure Assessment (SOFA), have limited ability to help clinicians i...

Bioinformatics and machine learning approaches to explore key biomarkers in muscle aging linked to adipogenesis.

BMC musculoskeletal disorders
Adipogenesis is intricately linked to the onset and progression of muscle aging; however, the relevant biomarkers remain unclear. This study sought to identify key genes associated with adipogenesis in the context of muscle aging. Firstly, gene expre...

Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of depression in stroke patients.

BMC geriatrics
BACKGROUND: Depression is a common complication after a stroke that may lead to increased disability and decreased quality of life. The objective of this study was to develop and validate an interpretable predictive model to assess the risk of depres...

Optimizing heart disease diagnosis with advanced machine learning models: a comparison of predictive performance.

BMC cardiovascular disorders
Cardiovascular disease is the leading cause of mortality globally, necessitating precise and prompt predictive instruments to enhance patient outcomes. In recent years, machine learning methodologies have demonstrated significant potential in enhanci...