AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biomarkers, Tumor

Showing 51 to 60 of 978 articles

Clear Filters

A tumor-infiltrating B lymphocytes -related index based on machine-learning predicts prognosis and immunotherapy response in lung adenocarcinoma.

Frontiers in immunology
INTRODUCTION: Tumor-infiltrating B lymphocytes (TILBs) play a pivotal role in shaping the immune microenvironment of tumors (TIME) and in the progression of lung adenocarcinoma (LUAD). However, there remains a scarcity of research that has thoroughly...

Development and validation of machine learning models for early diagnosis and prognosis of lung adenocarcinoma using miRNA expression profiles.

Cancer biomarkers : section A of Disease markers
ObjectiveStudy aims to develop diagnostic and prognostic models for lung adenocarcinoma (LUAD) using Machine learning(ML)algorithms, aiming to enhance clinical decision-making accuracy.MethodsData from The Cancer Genome Atlas (TCGA) for LUAD patients...

Deep learning-based identification of patients at increased risk of cancer using routine laboratory markers.

Scientific reports
Early screening for cancer has proven to improve the survival rate and spare patients from intensive and costly treatments due to late diagnosis. Cancer screening in the healthy population involves an initial risk stratification step to determine the...

Identification of M1 macrophage infiltration-related genes for immunotherapy in Her2-positive breast cancer based on bioinformatics analysis and machine learning.

Scientific reports
Over the past several decades, there has been a significant increase in the number of breast cancer patients. Among the four subtypes of breast cancer, Her2-positive breast cancer is one of the most aggressive breast cancers. In this study, we screen...

Integration of graph neural networks and transcriptomics analysis identify key pathways and gene signature for immunotherapy response and prognosis of skin melanoma.

BMC cancer
OBJECTIVE: The assessment of immunotherapy plays a pivotal role in the clinical management of skin melanoma. Graph neural networks (GNNs), alongside other deep learning algorithms and bioinformatics approaches, have demonstrated substantial promise i...

Using Machine Learning to Predict Survival in Patients with Metastatic Castration-Resistant Prostate Cancer.

Studies in health technology and informatics
Non-specific clinical biomarkers have been shown to help identify prognostic risks in cancer patients. However, the accuracy of prognostic biomarkers for predicting survival in patients with metastatic castration-resistant prostate cancer (mCRPC) sti...

Combining multi-omics analysis with machine learning to uncover novel molecular subtypes, prognostic markers, and insights into immunotherapy for melanoma.

BMC cancer
BACKGROUND: Melanoma (SKCM) is an extremely aggressive form of cancer, characterized by high mortality rates, frequent metastasis, and limited treatment options. Our study aims to identify key target genes and enhance the diagnostic accuracy of melan...

PD-L1 Scoring Models for Non-Small Cell Lung Cancer in China: Current Status, AI-Assisted Solutions and Future Perspectives.

Thoracic cancer
Immunotherapy has revolutionized the diagnosis and treatment model for patients with advanced non-small cell lung cancer (NSCLC). Numerous clinical trials and real-world reports have confirmed that PD-L1 status is a key factor for the successful use ...

Identification of thyroid cancer biomarkers using WGCNA and machine learning.

European journal of medical research
OBJECTIVE: The incidence of thyroid cancer (TC) is increasing in China, largely due to overdiagnosis from widespread screening and improved ultrasound technology. Identifying precise TC biomarkers is crucial for accurate diagnosis and effective treat...