AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Male

Showing 231 to 240 of 21985 articles

Clear Filters

A deep learning model combining circulating tumor cells and radiological features in the multi-classification of mediastinal lesions in comparison with thoracic surgeons: a large-scale retrospective study.

BMC medicine
BACKGROUND: CT images and circulating tumor cells (CTCs) are indispensable for diagnosing the mediastinal lesions by providing radiological and intra-tumoral information. This study aimed to develop and validate a deep multimodal fusion network (DMFN...

Enhanced classification of tinnitus patients using EEG microstates and deep learning techniques.

Scientific reports
This study aims to deepen the understanding and classification of tinnitus through a comprehensive analysis of EEG signals utilizing innovative microstate analysis techniques and cutting-edge machine learning approaches. EEG data were collected from ...

Machine learning model for differentiating malignant from benign thyroid nodules based on the thyroid function data.

BMJ open
OBJECTIVES: To develop and validate a machine learning (ML) model to differentiate malignant from benign thyroid nodules (TNs) based on the routine data and provide diagnostic assistance for medical professionals.

Comparing Artificial Intelligence-Generated and Clinician-Created Personalized Self-Management Guidance for Patients With Knee Osteoarthritis: Blinded Observational Study.

Journal of medical Internet research
BACKGROUND: Knee osteoarthritis is a prevalent, chronic musculoskeletal disorder that impairs mobility and quality of life. Personalized patient education aims to improve self-management and adherence; yet, its delivery is often limited by time const...

Single-microphone deep envelope separation based auditory attention decoding for competing speech and music.

Journal of neural engineering
In this study, we introduce an end-to-end single microphone deep learning system for source separation and auditory attention decoding (AAD) in a competing speech and music setup. Deep source separation is applied directly on the envelope of the obse...

Optimizing Strategy for Lung Cancer Screening: From Risk Prediction to Clinical Decision Support.

JCO clinical cancer informatics
PURPOSE: Low-dose computed tomography (LDCT) screening is effective in reducing lung cancer mortality by detecting the disease at earlier, more treatable stages. However, high false-positive rates and the associated risks of subsequent invasive diagn...

Annotation-Free Whole-Slide Image Analysis Method to Assess Immune Infiltration in Colorectal Cancer.

JCO precision oncology
PURPOSE: Tumor-infiltrating lymphocytes (TILs) play a crucial role in host antitumor processes. High level of TILs is associated with better outcomes for patients. We aim to automatically quantify TILs without any nuclei annotation and further constr...

Unsupervised Test-Time Adaptation for Hepatic Steatosis Grading Using Ultrasound B-Mode Images.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Ultrasound (US) is considered a key modality for the clinical assessment of hepatic steatosis (i.e., fatty liver) due to its noninvasiveness and availability. Deep learning methods have attracted considerable interest in this field, as they are capab...

All-Cause Mortality Risk in Elderly Patients with Femoral Neck and Intertrochanteric Fractures: A Predictive Model Based on Machine Learning.

Clinical interventions in aging
INTRODUCTION: The aim of this study was to identify the influencing factors for all-cause mortality in elderly patients with intertrochanteric and femoral neck fractures and to construct predictive models.

Explainable Machine Learning Models for Colorectal Cancer Prediction Using Clinical Laboratory Data.

Cancer control : journal of the Moffitt Cancer Center
IntroductionEarly diagnosis of colorectal cancer (CRC) poses a significant clinical challenge. This study aims to develop machine learning (ML) models for CRC risk prediction using clinical laboratory data.MethodsThis retrospective, single-center stu...