AIMC Topic: Oligonucleotide Array Sequence Analysis

Clear Filters Showing 21 to 30 of 98 articles

Identification of drug combinations on the basis of machine learning to maximize anti-aging effects.

PloS one
Aging is a multifactorial process that involves numerous genetic changes, so identifying anti-aging agents is quite challenging. Age-associated genetic factors must be better understood to search appropriately for anti-aging agents. We utilized an ag...

Characterization of Antiphospholipid Syndrome Atherothrombotic Risk by Unsupervised Integrated Transcriptomic Analyses.

Arteriosclerosis, thrombosis, and vascular biology
OBJECTIVE: Our aim was to characterize distinctive clinical antiphospholipid syndrome phenotypes and identify novel microRNA (miRNA)-mRNA-intracellular signaling regulatory networks in monocytes linked to cardiovascular disease. Approach and Results:...

Identification of early liver toxicity gene biomarkers using comparative supervised machine learning.

Scientific reports
Screening agrochemicals and pharmaceuticals for potential liver toxicity is required for regulatory approval and is an expensive and time-consuming process. The identification and utilization of early exposure gene signatures and robust predictive mo...

Classification of Microarray Gene Expression Data Using an Infiltration Tactics Optimization (ITO) Algorithm.

Genes
A number of different feature selection and classification techniques have been proposed in literature including parameter-free and parameter-based algorithms. The former are quick but may result in local maxima while the latter use dataset-specific ...

Stable gene selection by self-representation method in fuzzy sample classification.

Medical & biological engineering & computing
In recent years, microarray technology and gene expression profiles have been widely used to detect, predict, or classify the samples of various diseases. The presence of large genes in these profiles and the small number of samples are known challen...

Machine learning workflows to estimate class probabilities for precision cancer diagnostics on DNA methylation microarray data.

Nature protocols
DNA methylation data-based precision cancer diagnostics is emerging as the state of the art for molecular tumor classification. Standards for choosing statistical methods with regard to well-calibrated probability estimates for these typically highly...

Gene expression based survival prediction for cancer patients-A topic modeling approach.

PloS one
Cancer is one of the leading cause of death, worldwide. Many believe that genomic data will enable us to better predict the survival time of these patients, which will lead to better, more personalized treatment options and patient care. As standard ...

A machine learning approach for the identification of population-informative markers from high-throughput genotyping data: application to several pig breeds.

Animal : an international journal of animal bioscience
Single nucleotide polymorphisms (SNPs) able to describe population differences can be used for important applications in livestock, including breed assignment of individual animals, authentication of mono-breed products and parentage verification amo...