AIMC Topic: Prevalence

Clear Filters Showing 131 to 140 of 281 articles

Evaluation of incomplete maternal smoking data using machine learning algorithms: a study from the Medical Birth Registry of Norway.

BMC pregnancy and childbirth
BACKGROUND: The Medical Birth Registry of Norway (MBRN) provides national coverage of all births. While retrieval of most of the information in the birth records is mandatory, mothers may refrain to provide information on her smoking status. The prop...

Identification of prognostic factors for pediatric myocarditis with a random forests algorithm-assisted approach.

Pediatric research
BACKGROUND: Pediatric myocarditis is a rare disease with substantial mortality. Little is known regarding its prognostic factors. We hypothesize that certain comorbidities and procedural needs may increase risks of poor outcomes. This study aims to i...

Tree-Based Machine Learning to Identify and Understand Major Determinants for Stroke at the Neighborhood Level.

Journal of the American Heart Association
Background Stroke is a major cardiovascular disease that causes significant health and economic burden in the United States. Neighborhood community-based interventions have been shown to be both effective and cost-effective in preventing cardiovascul...

Development of a Portable Tool to Identify Patients With Atrial Fibrillation Using Clinical Notes From the Electronic Medical Record.

Circulation. Cardiovascular quality and outcomes
BACKGROUND: The electronic medical record contains a wealth of information buried in free text. We created a natural language processing algorithm to identify patients with atrial fibrillation (AF) using text alone.

Machine Learning Models to Predict Childhood and Adolescent Obesity: A Review.

Nutrients
The prevalence of childhood and adolescence overweight an obesity is raising at an alarming rate in many countries. This poses a serious threat to the current and near-future health systems, given the association of these conditions with different co...

Untangling the complexity of multimorbidity with machine learning.

Mechanisms of ageing and development
The prevalence of multimorbidity has been increasing in recent years, posing a major burden for health care delivery and service. Understanding its determinants and impact is proving to be a challenge yet it offers new opportunities for research to g...

Improving disaggregation models of malaria incidence by ensembling non-linear models of prevalence.

Spatial and spatio-temporal epidemiology
Maps of disease burden are a core tool needed for the control and elimination of malaria. Reliable routine surveillance data of malaria incidence, typically aggregated to administrative units, is becoming more widely available. Disaggregation regress...

Machine learning for the identification of clinically significant prostate cancer on MRI: a meta-analysis.

European radiology
OBJECTIVES: The aim of this study was to systematically review the literature and perform a meta-analysis of machine learning (ML) diagnostic accuracy studies focused on clinically significant prostate cancer (csPCa) identification on MRI.

Machine-learning models for depression and anxiety in individuals with immune-mediated inflammatory disease.

Journal of psychosomatic research
OBJECTIVE: Individuals with immune-mediated inflammatory disease (IMID) have a higher prevalence of psychiatric disorders than the general population. We utilized machine-learning to identify patient-reported outcome measures (PROMs) that accurately ...

Understanding Opioid Use Disorder (OUD) using tree-based classifiers.

Drug and alcohol dependence
BACKGROUND: Opioid Use Disorder (OUD), defined as a physical or psychological reliance on opioids, is a public health epidemic. Identifying adults likely to develop OUD can help public health officials in planning effective intervention strategies. T...