AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Single-Cell Gene Expression Analysis

Showing 1 to 10 of 46 articles

Clear Filters

Deciphering the role of metal ion transport-related genes in T2D pathogenesis and immune cell infiltration via scRNA-seq and machine learning.

Frontiers in immunology
INTRODUCTION: Type 2 diabetes (T2D) is a complex metabolic disorder with significant global health implications. Understanding the molecular mechanisms underlying T2D is crucial for developing effective therapeutic strategies. This study employs sing...

Integrating scRNA-seq and scATAC-seq with inter-type attention heterogeneous graph neural networks.

Briefings in bioinformatics
Single-cell multi-omics techniques, which enable the simultaneous measurement of multiple modalities such as RNA gene expression and Assay for Transposase-Accessible Chromatin (ATAC) within individual cells, have become a powerful tool for decipherin...

Identification of potential biomarkers in cardiovascular calcification based on bioinformatics combined with single-cell RNA-seq and multiple machine learning analysis.

Cellular signalling
BACKGROUND: The molecular and genetic mechanisms underlying vascular calcification remain unclear. This study aimed to determine the differences in calcification marker-related gene expression in macrophages.

Investigation of cell development and tissue structure network based on natural Language processing of scRNA-seq data.

Journal of translational medicine
BACKGROUND: Single-cell multi-omics technologies, particularly single-cell RNA sequencing (scRNA-seq), have revolutionized our understanding of cellular heterogeneity and development by providing insights into gene expression at the single-cell level...

GRLGRN: graph representation-based learning to infer gene regulatory networks from single-cell RNA-seq data.

BMC bioinformatics
BACKGROUND: A gene regulatory network (GRN) is a graph-level representation that describes the regulatory relationships between transcription factors and target genes in cells. The reconstruction of GRNs can help investigate cellular dynamics, drug d...

Molecular features and diagnostic modeling of synovium- and IPFP-derived OA macrophages in the inflammatory microenvironment via scRNA-seq and machine learning.

Journal of orthopaedic surgery and research
BACKGROUND: Osteoarthritis (OA) is the leading cause of degenerative joint disease, with total joint replacement as the only definitive cure. However, no disease-modifying therapy is currently available. Inflammation and fibrosis in the infrapatellar...

scAMZI: attention-based deep autoencoder with zero-inflated layer for clustering scRNA-seq data.

BMC genomics
BACKGROUND: Clustering scRNA-seq data plays a vital role in scRNA-seq data analysis and downstream analyses. Many computational methods have been proposed and achieved remarkable results. However, there are several limitations of these methods. First...

scMUSCL: multi-source transfer learning for clustering scRNA-seq data.

Bioinformatics (Oxford, England)
MOTIVATION: Single-cell RNA sequencing (scRNA-seq) analysis relies heavily on effective clustering to facilitate numerous downstream applications. Although several machine learning methods have been developed to enhance single-cell clustering, most a...