AIMC Topic: Transcriptome

Clear Filters Showing 901 to 910 of 929 articles

DM3Loc: multi-label mRNA subcellular localization prediction and analysis based on multi-head self-attention mechanism.

Nucleic acids research
Subcellular localization of messenger RNAs (mRNAs), as a prevalent mechanism, gives precise and efficient control for the translation process. There is mounting evidence for the important roles of this process in a variety of cellular events. Computa...

Modeling multi-species RNA modification through multi-task curriculum learning.

Nucleic acids research
N6-methyladenosine (m6A) is the most pervasive modification in eukaryotic mRNAs. Numerous biological processes are regulated by this critical post-transcriptional mark, such as gene expression, RNA stability, RNA structure and translation. Recently, ...

Merged Affinity Network Association Clustering: Joint multi-omic/clinical clustering to identify disease endotypes.

Cell reports
Although clinical and laboratory data have long been used to guide medical practice, this information is rarely integrated with multi-omic data to identify endotypes. We present Merged Affinity Network Association Clustering (MANAclust), a coding-fre...

Deep learning in systems medicine.

Briefings in bioinformatics
Systems medicine (SM) has emerged as a powerful tool for studying the human body at the systems level with the aim of improving our understanding, prevention and treatment of complex diseases. Being able to automatically extract relevant features nee...

Integration and transfer learning of single-cell transcriptomes via cFIT.

Proceedings of the National Academy of Sciences of the United States of America
Large, comprehensive collections of single-cell RNA sequencing (scRNA-seq) datasets have been generated that allow for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. As new methods...

iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine learning.

Nucleic acids research
Independent component analysis (ICA) of bacterial transcriptomes has emerged as a powerful tool for obtaining co-regulated, independently-modulated gene sets (iModulons), inferring their activities across a range of conditions, and enabling their ass...

m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome.

Nucleic acids research
N 6-Methyladenosine (m6A) is the most prevalent RNA modification on mRNAs and lncRNAs. It plays a pivotal role during various biological processes and disease pathogenesis. We present here a comprehensive knowledgebase, m6A-Atlas, for unraveling the ...

Prediction of survival rate and effect of drugs on cancer patients with somatic mutations of genes: An AI-based approach.

Chemical biology & drug design
The causal role of somatic mutation and its interrelationship with gene expression profile during tumor development has already been observed, which plays a major role to decide the cancer grades and overall survival. Accurate and robust prediction o...

Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks.

Journal of the American Medical Informatics Association : JAMIA
OBJECTIVE: Non-small cell lung cancer is a leading cause of cancer death worldwide, and histopathological evaluation plays the primary role in its diagnosis. However, the morphological patterns associated with the molecular subtypes have not been sys...