The Omicron SARS-CoV-2 variant continues to strain healthcare systems. Developing tools that facilitate the identification of patients at highest risk of adverse outcomes is a priority. The study objectives are to develop population-scale predictive ...
OBJECTIVES: To assess a deep learning-based reconstruction algorithm (DLRecon) in zero echo-time (ZTE) MRI of the shoulder at 1.5 Tesla for improved delineation of osseous findings.
BACKGROUND: Anxiety disorders are among the most common mental health disorders in the middle aged and older population. Because older individuals are more likely to have multiple comorbidities or increased frailty, the impact of anxiety disorders on...
Journal of cardiovascular computed tomography
Apr 24, 2024
INTRODUCTION: Coronary artery calcium (CAC) scans contain useful information beyond the Agatston CAC score that is not currently reported. We recently reported that artificial intelligence (AI)-enabled cardiac chambers volumetry in CAC scans (AI-CAC™...
OBJECTIVES: Impaired perivascular clearance has been suggested as a contributing factor to the pathogenesis of Alzheimer disease (AD). However, it remains unresolved when the anatomy of the perivascular space (PVS) is altered during AD progression. T...
INTRODUCTION: We conducted the first comprehensive evaluation of the therapeutic value and safety profile of transcatheter mitral edge-to-edge repair (TEER) and transcatheter mitral valve replacement (TMVR) in individuals concurrently afflicted with ...
BACKGROUND: The accuracy of available prediction tools for clinical outcomes in patients with atrial fibrillation (AF) remains modest. Machine Learning (ML) has been used to predict outcomes in the AF population, but not in a population entirely on a...
Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
Apr 23, 2024
BACKGROUND: Acute kidney injury (AKI) is not only a complication but also a serious threat to patients with cerebral infarction (CI). This study aimed to explore the application of interpretable machine learning algorithms in predicting AKI in patien...
PURPOSE: To investigate the influence of deep learning reconstruction (DLR) on bladder MRI, specifically examination time, image quality, and diagnostic performance of vesical imaging reporting and data system (VI-RADS) within a prospective clinical ...
BACKGROUND: To develop a deep learning(DL) model utilizing ultrasound images, and evaluate its efficacy in distinguishing between benign and malignant parotid tumors (PTs), as well as its practicality in assisting clinicians with accurate diagnosis.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.