AIMC Topic: Aged, 80 and over

Clear Filters Showing 1441 to 1450 of 3474 articles

Toward understanding COVID-19 pneumonia: a deep-learning-based approach for severity analysis and monitoring the disease.

Scientific reports
We report a new approach using artificial intelligence (AI) to study and classify the severity of COVID-19 using 1208 chest X-rays (CXRs) of 396 COVID-19 patients obtained through the course of the disease at Emory Healthcare affiliated hospitals (At...

Using deep learning convolutional neural networks to automatically perform cerebral aqueduct CSF flow analysis.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
Since the development of phase-contrast magnetic resonance imaging (PC-MRI), quantification of cerebrospinal fluid (CSF) flow across the cerebral aqueduct has been utilized for diagnosis of conditions such as normal pressure hydrocephalus (NPH). This...

Deep-Learning-Driven Quantification of Interstitial Fibrosis in Digitized Kidney Biopsies.

The American journal of pathology
Interstitial fibrosis and tubular atrophy (IFTA) on a renal biopsy are strong indicators of disease chronicity and prognosis. Techniques that are typically used for IFTA grading remain manual, leading to variability among pathologists. Accurate IFTA ...

Machine Learning Algorithm Identifies the Importance of Environmental Factors for Hospital Discharge to Home of Stroke Patients using Wheelchair after Discharge.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND AND PURPOSE: Physical environmental factors are generally likely to become barriers for discharge to home of wheelchair users, compared with non-wheelchair users. However, the importance of environmental factors has not been investigated a...

Integrative learning for population of dynamic networks with covariates.

NeuroImage
Although there is a rapidly growing literature on dynamic connectivity methods, the primary focus has been on separate network estimation for each individual, which fails to leverage common patterns of information. We propose novel graph-theoretic ap...

Deep learning predicts cardiovascular disease risks from lung cancer screening low dose computed tomography.

Nature communications
Cancer patients have a higher risk of cardiovascular disease (CVD) mortality than the general population. Low dose computed tomography (LDCT) for lung cancer screening offers an opportunity for simultaneous CVD risk estimation in at-risk patients. Ou...

Application of deep learning to understand resilience to Alzheimer's disease pathology.

Brain pathology (Zurich, Switzerland)
People who have Alzheimer's disease neuropathologic change (ADNC) typically associated with dementia but not the associated cognitive decline can be considered to be "resilient" to the effects of ADNC. We have previously reported lower neocortical le...