AIMC Topic: Gene Expression Profiling

Clear Filters Showing 321 to 330 of 1306 articles

Machine learning based anoikis signature predicts personalized treatment strategy of breast cancer.

Frontiers in immunology
BACKGROUND: Breast cancer remains a leading cause of mortality among women worldwide, emphasizing the urgent need for innovative prognostic tools to improve treatment strategies. Anoikis, a form of programmed cell death critical in preventing metasta...

A multi-class support vector machine classification model based on 14 microRNAs for forensic body fluid identification.

Forensic science international. Genetics
MicroRNAs (miRNAs) are promising biomarkers for forensic body fluid identification owing to their small size, stability against degradation, and differential expression patterns. However, the expression of most body fluid-miRNAs is relative (differen...

Analysis of the relationships between interferon-stimulated genes and anti-SSA/Ro 60 antibodies in primary Sjögren's syndrome patients via multiomics and machine learning methods.

International immunopharmacology
BACKGROUND: Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease characterized by lymphocyte infiltration of the exocrine glands. Interferon-stimulated genes (ISGs) are often upregulated in patients with pSS, and anti-SSA/Ro 60 a...

Explainable Machine Learning Models Using Robust Cancer Biomarkers Identification from Paired Differential Gene Expression.

International journal of molecular sciences
In oncology, there is a critical need for robust biomarkers that can be easily translated into the clinic. We introduce a novel approach using paired differential gene expression analysis for biological feature selection in machine learning models, e...

A Transcriptomics-Based Machine Learning Model Discriminating Mild Cognitive Impairment and the Prediction of Conversion to Alzheimer's Disease.

Cells
The clinical spectrum of Alzheimer's disease (AD) ranges dynamically from asymptomatic and mild cognitive impairment (MCI) to mild, moderate, or severe AD. Although a few disease-modifying treatments, such as lecanemab and donanemab, have been develo...

SDC4 protein action and related key genes in nonhealing diabetic foot ulcers based on bioinformatics analysis and machine learning.

International journal of biological macromolecules
Diabetic foot ulcers (DFU) is a complication associated with diabetes characterised by high morbidity, disability, and mortality, involving chronic inflammation and infiltration of multiple immune cells. We aimed to identify the critical genes in non...

Identification and validation of biomarkers related to mitochondria during ex vivo lung perfusion for lung transplants based on machine learning algorithm.

Gene
BACKGROUND: Ex vivo lung perfusion (EVLP) is a critical strategy to rehabilitate marginal donor lungs, thereby increasing lung transplantation (LTx) rates. Ischemia-reperfusion (I/R) injury inevitably occurs during LTx. Exploring the common mechanism...

Deep learning-based models for preimplantation mouse and human embryos based on single-cell RNA sequencing.

Nature methods
The rapid growth of single-cell transcriptomic technology has produced an increasing number of datasets for both embryonic development and in vitro pluripotent stem cell-derived models. This avalanche of data surrounding pluripotency and the process ...

Identification of diagnostic genes and the miRNA‒mRNA‒TF regulatory network in human oocyte aging via machine learning methods.

Journal of assisted reproduction and genetics
PURPOSE: Oocyte aging is a significant factor in the negative reproductive outcomes of older women. However, the pathogenesis of oocyte aging remains unclear. This study aimed to identify the hub genes involved in oocyte aging via bioinformatics meth...